-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrainer.py
372 lines (309 loc) · 16.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import torch
torch.manual_seed(0)
import torch.utils.data
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from model import *
from tqdm import *
from evaluation import *
from datetime import datetime
__all__ = ['loss_fn', 'Trainer']
# calculate graph similarity
class GrfSim(nn.Module):
def __init__(self, max_num_nodes, device):
super(GrfSim, self).__init__()
self.device = device
self.max_num_nodes= max_num_nodes
def edge_similarity_matrix(self, adj, adj_recon, matching_features,
matching_features_recon, sim_func):
S = torch.zeros(self.max_num_nodes, self.max_num_nodes,
self.max_num_nodes, self.max_num_nodes)
for i in range(self.max_num_nodes):
for j in range(self.max_num_nodes):
if i == j:
for a in range(self.max_num_nodes):
S[i, i, a, a] = adj[i, i] * adj_recon[a, a] * \
sim_func(matching_features[i], matching_features_recon[a])
else:
for a in range(self.max_num_nodes):
for b in range(self.max_num_nodes):
if b == a:
continue
S[i, j, a, b] = adj[i, j] * adj[i, i] * adj[j, j] * \
adj_recon[a, b] * adj_recon[a, a] * adj_recon[b, b]
return S
def mpm(self, x_init, S, max_iters=50):
x = x_init
for it in range(max_iters):
x_new = torch.zeros(self.max_num_nodes, self.max_num_nodes)
for i in range(self.max_num_nodes):
for a in range(self.max_num_nodes):
x_new[i, a] = x[i, a] * S[i, i, a, a]
pooled = [torch.max(x[j, :] * S[i, j, a, :])
for j in range(self.max_num_nodes) if j != i]
neigh_sim = sum(pooled)
x_new[i, a] += neigh_sim
norm = torch.norm(x_new)
x = x_new / norm
return x
def deg_feature_similarity(self, f1, f2):
return 1 / (abs(f1 - f2) + 1)
def permute_adj(self, adj, curr_ind, target_ind):
''' Permute adjacency matrix.
The target_ind (connectivity) should be permuted to the curr_ind position.
'''
# order curr_ind according to target ind
ind = np.zeros(self.max_num_nodes, dtype=np.int)
ind[target_ind] = curr_ind
adj_permuted = torch.zeros((self.max_num_nodes, self.max_num_nodes))
adj_permuted[:, :] = adj[ind, :]
adj_permuted[:, :] = adj_permuted[:, ind]
return adj_permuted
def adj_recon_loss(self, adj_truth, adj_pred):
return F.binary_cross_entropy(adj_pred, adj_truth)
def forward(self, recon_grf, original_grf):
# set matching features be degree (# of edges): graph matching
out_features = torch.sum(recon_grf, 1)
adj_data = original_grf
adj_features = torch.sum(adj_data, 1)
S = self.edge_similarity_matrix(adj_data, recon_grf, adj_features, out_features,
self.deg_feature_similarity)
# initialization strategies
init_corr = 1 / self.max_num_nodes
init_assignment = torch.ones(self.max_num_nodes, self.max_num_nodes) * init_corr
assignment = self.mpm(init_assignment, S)
adj_permuted = adj_data
adj_vectorized = adj_permuted[torch.triu(torch.ones(self.max_num_nodes,self.max_num_nodes))== 1].squeeze_()
adj_vectorized_var = Variable(adj_vectorized)
recon_permuted= recon_grf
recon_vectorized = recon_permuted[torch.triu(torch.ones(self.max_num_nodes, self.max_num_nodes)) == 1].squeeze_()
recon_vectorized_var = Variable(recon_vectorized)
adj_recon_loss = self.adj_recon_loss(adj_vectorized_var, recon_vectorized_var)
return adj_recon_loss
def metrics(original_full_adj, recon_adj):
original_full_adj= original_full_adj.data.cpu().numpy()
recon_adj= recon_adj.data.cpu().numpy()
#print("type: ", type(original_adj), type(recon_adj))
# -------evaluation statistics
# recon_adj_copy= recon_adj.copy()
# recon_adj_copy[recon_adj > 0.5] = 1
# recon_adj_copy[recon_adj <= 0.5] = 0
#print("original_adj.shape: ", original_adj.shape, "recon_adj.shape: ", recon_adj.shape) #(64, 100, 8, 3)
# DGs = Discrete_Graphs(original_full_adj) # compare with the whole dataset
# FDGs = Discrete_Graphs(recon_adj_copy)
#print('DGs.graphs', len(DGs.graphs))
#print('FDGs.graphs', len(FDGs.graphs))
#Bursty_Coeff= MMD(DGs.Sample_Bursty_Coeff(), FDGs.Sample_Bursty_Coeff())
#Temporal_Efficiency= MMD(DGs.Sample_Temporal_Degree_Centrality(), FDGs.Sample_Temporal_Degree_Centrality())
Bursty_Coeff = torch.tensor(0)
Temporal_Efficiency = torch.tensor(0)
#Degree_Centrality = np.mean(abs(DGs.Sample_Temporal_Degree_Centrality() - FDGs.Sample_Temporal_Degree_Centrality()))
Degree_Centrality= torch.tensor(0)
# a = DGs.Sample_Temporal_Degree_Centrality()
# b = FDGs.Sample_Temporal_Degree_Centrality()
# Degree_Centrality= np.mean(np.abs(np.mean(a, axis=0) - np.mean(b, axis=0)))
return Bursty_Coeff, Temporal_Efficiency, Degree_Centrality
def loss_fn(original_adj, recon_adj, original_feature, recon_feature, f_mean, f_logvar, z_post_mean_edge, z_post_logvar_edge,
z_post_mean_node, z_post_logvar_node, z_post_mean_edge_node, z_post_logvar_edge_node,
z_prior_mean_edge, z_prior_logvar_edge, z_prior_mean_node, z_prior_logvar_node,
z_prior_mean_edge_node, z_prior_logvar_edge_node, original_full_adj, max_num_nodes, device):
"""
Loss function: 1. The MSE loss between the generated and the original graphs
2. The KL divergence of f,
3. The sum over the KL divergence of each z_t, with the sum divided by batch_size
Loss = {mse + KL of f + sum(KL of z_t)} / batch_size
Prior of f is a spherical zero mean unit variance Gaussian and the prior of each z_t is a Gaussian whose mean and variance
are given by the LSTM
"""
batch_size = original_adj.size(0)
seq_len= original_adj.size(1)
mse_feature = F.mse_loss(original_feature, recon_feature, reduction='sum')
Bursty_Coeff, Temporal_Efficiency, Degree_Centrality = metrics(original_full_adj, recon_adj)
# 1. graphs similarity by mpm (computational expensive)
# grf_disim= 0
# grfsim = GrfSim(max_num_nodes, device)
# grfsim = grfsim.to(device)
# for i in range(batch_size):
# for j in range(seq_len):
# loss = grfsim(recon_adj[i][j], original_adj[i][j])
# grf_disim+= loss
# 2. graphs similarity by cross entropy
original_adj= Variable(original_adj)
recon_adj= Variable(recon_adj)
grf_disim= F.binary_cross_entropy(input= recon_adj, target= original_adj)
original_edge_num= original_adj.sum()/batch_size
recon_adj_copy= recon_adj.data.cpu().numpy().copy()
recon_adj_copy[recon_adj_copy > 0.5]= 1
recon_adj_copy[recon_adj_copy <= 0.5] = 0
recon_edge_num= recon_adj_copy.sum()/batch_size
kld_f = -0.5 * torch.sum(1 + f_logvar - torch.pow(f_mean, 2) - torch.exp(f_logvar))
z_post_var_edge = torch.exp(z_post_logvar_edge)
z_prior_var_edge = torch.exp(z_prior_logvar_edge)
z_post_var_node = torch.exp(z_post_logvar_node)
z_prior_var_node = torch.exp(z_prior_logvar_node)
z_post_var_edge_node = torch.exp(z_post_logvar_edge_node)
z_prior_var_edge_node = torch.exp(z_prior_logvar_edge_node)
kld_z_edge = 0.5 * torch.sum(z_prior_logvar_edge - z_post_logvar_edge +
((z_post_var_edge + torch.pow(z_post_mean_edge - z_prior_mean_edge, 2)) / z_prior_var_edge) - 1)
kld_z_node = 0.5 * torch.sum(z_prior_logvar_node - z_post_logvar_node +
((z_post_var_node + torch.pow(z_post_mean_node - z_prior_mean_node, 2)) / z_prior_var_node) - 1)
kld_z_edge_node = 0.5 * torch.sum(z_prior_logvar_edge_node - z_post_logvar_edge_node +
((z_post_var_edge_node + torch.pow(z_post_mean_edge_node - z_prior_mean_edge_node, 2)) / z_prior_var_edge_node) - 1)
return ((grf_disim + mse_feature) + kld_f + kld_z_edge + kld_z_node+ kld_z_edge_node) / batch_size, \
grf_disim/batch_size, mse_feature/batch_size,\
kld_f / batch_size, (kld_z_edge + kld_z_node+ kld_z_edge_node) / batch_size,\
Bursty_Coeff/ batch_size, Temporal_Efficiency/ batch_size, Degree_Centrality/ batch_size, original_edge_num, recon_edge_num
class Trainer(object):
def __init__(self, model, trainloader, test_f_expand, max_num_nodes, genr_batch_size, original_full_adj,
epochs=3, learning_rate=0.001, nsamples=1, recon_path='./recon/',
checkpoints='./output/model.pth', device=torch.device('cuda:0')):
self.trainloader = trainloader
self.start_epoch = 0
self.epochs = epochs
self.device = device
self.model = model
self.model.to(device)
self.learning_rate = learning_rate
self.checkpoints = checkpoints
self.optimizer = optim.Adam(self.model.parameters(), self.learning_rate)
self.samples = nsamples
self.sample_path = []
self.recon_path = recon_path
self.test_f_expand = test_f_expand
self.epoch_losses = []
self.max_num_nodes= max_num_nodes
self.genr_batch_size= genr_batch_size
self.original_full_adj= original_full_adj
def save_checkpoint(self, epoch):
torch.save({
'epoch': epoch + 1,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'losses': self.epoch_losses},
self.checkpoints)
def load_checkpoint(self):
try:
print("Loading Checkpoint from '{}'".format(self.checkpoints))
checkpoint = torch.load(self.checkpoints)
self.start_epoch = checkpoint['epoch']
self.model.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.epoch_losses = checkpoint['losses']
print("Resuming Training From Epoch {}".format(self.start_epoch))
except:
print("No Checkpoint Exists At '{}'.Start Fresh Training".format(self.checkpoints))
self.start_epoch = 0
def sample_graphs(self, epoch):
with torch.no_grad():
_, _, test_z_edge = self.model.sample_z(self.genr_batch_size, random_sampling=False)
_, _, test_z_node = self.model.sample_z(self.genr_batch_size, random_sampling=False)
print("from sample_frames: edge and node: ", test_z_edge.shape, test_z_node.shape)
print("from sample_frames: test_f_expand.shape: ", self.test_f_expand.shape)
test_zf_edge = torch.cat((test_z_edge, self.test_f_expand), dim=2) #fix f -> change
test_zf_node = torch.cat((test_z_node, self.test_f_expand), dim=2)
recon_adj, recon_feature = self.model.decode_graphs(test_zf_edge, test_zf_node)
print("from sample_frames: recon.shape: ", recon_adj.shape, recon_feature.shape)
recon_adj= recon_adj.cpu()
recon_feature= recon_feature.cpu()
np.save('./output/adj_{}.npy'.format("metro_fix_z"), recon_adj)
np.save('./output/feature_{}.npy'.format("metro_fix_z"), recon_feature)
def train_model(self):
self.model.train()
for epoch in range(self.start_epoch, self.epochs):
losses = []
kld_fs = []
kld_zs = []
grf_losses = []
node_losses = []
Bursty_Coeffs = []
Temporal_Efficiencies = []
Degree_Centralities = []
original_edges = []
recon_edges = []
print("Running Epoch : {}".format(epoch + 1))
for i, dataitem in tqdm(enumerate(self.trainloader, 1)):
adj, feature = dataitem
adj= adj.to(self.device)
feature= feature.to(self.device)
self.optimizer.zero_grad()
f_mean, f_logvar, f, z_post_mean_edge, z_post_logvar_edge, z_edge, z_post_mean_node, z_post_logvar_node, z_node, \
z_mean_edge_node, z_logvar_edge_node, z_edge_node, z_mean_prior_edge, z_logvar_prior_edge, z_mean_prior_node, \
z_logvar_prior_node, z_mean_prior_edge_node, z_logvar_prior_edge_node, recon_adj, recon_feature = self.model(adj, feature)
loss, grf_loss, node_loss, kld_f, kld_z, Bursty_Coeff, Temporal_Efficiency, Degree_Centrality, original_edge_num, recon_edge_num = \
loss_fn(adj, recon_adj, feature, recon_feature, f_mean, f_logvar, z_post_mean_edge,
z_post_logvar_edge, z_post_mean_node, z_post_logvar_node, z_mean_edge_node, z_logvar_edge_node,
z_mean_prior_edge, z_logvar_prior_edge, z_mean_prior_node, z_logvar_prior_node,
z_mean_prior_edge_node, z_logvar_prior_edge_node, self.original_full_adj, self.max_num_nodes, device=device)
loss.backward()
self.optimizer.step()
losses.append(loss.item())
kld_fs.append(kld_f.item())
kld_zs.append(kld_z.item())
grf_losses.append(grf_loss.item())
node_losses.append(node_loss.item())
Bursty_Coeffs.append(Bursty_Coeff.item())
Temporal_Efficiencies.append(Temporal_Efficiency.item())
Degree_Centralities.append(Degree_Centrality.item())
original_edges.append(original_edge_num.item())
recon_edges.append(recon_edge_num.item())
meanloss = np.mean(losses)
meanf = np.mean(kld_fs)
meanz = np.mean(kld_zs)
meangrf_loss = np.mean(grf_losses)
meannode_losses = np.mean(node_losses)
meanBursty_Coeffs = np.mean(Bursty_Coeffs)
meanTemporal_Efficiencies = np.mean(Temporal_Efficiencies)
meanDegree_Centralities = np.mean(Degree_Centralities)
original_edges_total= np.sum(original_edges)
recon_edges_total= np.sum(recon_edges)
self.epoch_losses.append(meanloss)
print("Epoch {} : Average Loss: {} Edge Loss {} Node Loss {} KL of f : {} KL of z : {} "
"Bursty_Coeff: {} Temporal_Efficiency: {} Degree_Centrality {} original_edges_total {} recon_edges_total {}".
format(epoch + 1, meanloss, meangrf_loss, meannode_losses, meanf, meanz, meanBursty_Coeffs, meanTemporal_Efficiencies, meanDegree_Centralities,
original_edges_total, recon_edges_total
))
self.save_checkpoint(epoch)
self.model.eval()
if epoch== self.epochs-1:
#if epoch%5== 0:
self.sample_graphs(epoch + 1)
self.model.train()
print("Training is complete")
if __name__ == '__main__':
#--------- load data
adj = np.load('./dataset/protein_adj.npy')
features = np.load('./dataset/protein_features.npy')
#--------- after loading dataset
# to torch
adj = torch.from_numpy(adj).float()
features = torch.from_numpy(features).float()
dataset = torch.utils.data.TensorDataset(adj, features)
batch_size = 64
seq_len = adj.size(1) #length of each sequence
max_num_nodes= adj.size(2)
feature_dim= features.size(3)
genr_batch_size = 100
f_dim= 256
loader = torch.utils.data.DataLoader(dataset, batch_size= batch_size, shuffle=True, num_workers=4)
#device = torch.device('cuda:0')
device = torch.device('cpu')
d2g2 = D2G2(f_dim=f_dim, z_dim=32, batch_size= batch_size, seq_len= seq_len, factorised=True, device=device,
graphs= seq_len,feature_dim= feature_dim, max_num_nodes= max_num_nodes)
fix_f= True
if not fix_f:
# 1. not fixed f: each snapshot has different f
test_f = torch.rand(genr_batch_size, f_dim, device=device)
test_f = test_f.unsqueeze(1).expand(genr_batch_size, seq_len, f_dim)
else:
# 2. fixed f : each snapshot has identical f
fix_f = torch.rand(f_dim, device=device)
fix_f = fix_f.expand(genr_batch_size, seq_len, f_dim)
test_f = fix_f
trainer = Trainer(d2g2, loader, test_f, epochs=100, learning_rate=0.0002,
device=device, max_num_nodes= max_num_nodes, genr_batch_size= genr_batch_size, original_full_adj=adj)
trainer.load_checkpoint()
startime = datetime.now()
trainer.train_model()
endtime= datetime.now()
print("time for training:", endtime-startime)