This repository maintains the implementation of D2G2 (SDM 21), a generic framework of deep generative models for interpretable dynamic graph generation. Detailded information about D2G2 is provided in D2G2.
- PyTorch 1.4 or higher
- Python 3.7
- Clone/download this repository.
- Add datasets consisting of adjacency matrix and feature matrix with time dimension to dataset folder.
- Run the code.
- model.py: the D2G2 model.
- trainer.py: train D2G2.
@inproceedings{zhang2021disentangled,
title={Disentangled Dynamic Graph Deep Generation},
author={Zhang, Wenbin and Zhang, Liming and Pfoser, Dieter and Zhao, Liang},
booktitle={Proceedings of the 2021 SIAM International Conference on Data Mining (SDM)},
pages={738--746},
year={2021},
organization={SIAM}
}