Skip to content

Commit

Permalink
sagemathgh-37993: sage.calculus.expr: Split out from `sage.calculus…
Browse files Browse the repository at this point in the history
….all`

    
<!-- ^ Please provide a concise and informative title. -->
<!-- ^ Don't put issue numbers in the title, do this in the PR
description below. -->
<!-- ^ For example, instead of "Fixes sagemath#12345" use "Introduce new method
to calculate 1 + 2". -->
<!-- v Describe your changes below in detail. -->
<!-- v Why is this change required? What problem does it solve? -->
<!-- v If this PR resolves an open issue, please link to it here. For
example, "Fixes sagemath#12345". -->

Cherry-picked from sagemath#36676/sagemath#37900.

### 📝 Checklist

<!-- Put an `x` in all the boxes that apply. -->

- [x] The title is concise and informative.
- [ ] The description explains in detail what this PR is about.
- [x] I have linked a relevant issue or discussion.
- [ ] I have created tests covering the changes.
- [ ] I have updated the documentation and checked the documentation
preview.

### ⌛ Dependencies

<!-- List all open PRs that this PR logically depends on. For example,
-->
<!-- - sagemath#12345: short description why this is a dependency -->
<!-- - sagemath#34567: ... -->
    
URL: sagemath#37993
Reported by: Matthias Köppe
Reviewer(s): John H. Palmieri, Matthias Köppe
  • Loading branch information
Release Manager committed May 14, 2024
2 parents 3d52f09 + d64bfa1 commit 32ed4a5
Show file tree
Hide file tree
Showing 3 changed files with 207 additions and 201 deletions.
2 changes: 2 additions & 0 deletions src/doc/en/reference/calculus/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ Using calculus

- :doc:`More about symbolic variables and functions <sage/calculus/var>`
- :doc:`Main operations on symbolic expressions <sage/symbolic/expression>`
- :doc:`sage/calculus/expr`
- :doc:`Assumptions about symbols and functions <sage/symbolic/assumptions>`
- :doc:`sage/symbolic/relation`
- :doc:`sage/symbolic/integration/integral`
Expand Down Expand Up @@ -65,6 +66,7 @@ Internal functionality supporting calculus

sage/symbolic/expression
sage/symbolic/callable
sage/calculus/expr
sage/symbolic/assumptions
sage/symbolic/relation
sage/calculus/calculus
Expand Down
203 changes: 2 additions & 201 deletions src/sage/calculus/all.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,8 @@
eulers_method_2x2_plot, desolve_rk4, desolve_system_rk4,
desolve_odeint, desolve_mintides, desolve_tides_mpfr)

from .var import (var, function, clear_vars)
from sage.calculus.expr import symbolic_expression
from sage.calculus.var import (var, function, clear_vars)

from .transforms.all import *

Expand All @@ -30,204 +31,4 @@
lazy_import("sage.calculus.riemann", ["Riemann_Map"])
lazy_import("sage.calculus.interpolators", ["polygon_spline", "complex_cubic_spline"])

from sage.modules.free_module_element import vector
from sage.matrix.constructor import matrix


def symbolic_expression(x):
"""
Create a symbolic expression or vector of symbolic expressions from x.
INPUT:
- ``x`` - an object
OUTPUT:
- a symbolic expression.
EXAMPLES::
sage: a = symbolic_expression(3/2); a
3/2
sage: type(a)
<class 'sage.symbolic.expression.Expression'>
sage: R.<x> = QQ[]; type(x)
<class 'sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint'>
sage: a = symbolic_expression(2*x^2 + 3); a
2*x^2 + 3
sage: type(a)
<class 'sage.symbolic.expression.Expression'>
sage: from sage.structure.element import Expression
sage: isinstance(a, Expression)
True
sage: a in SR
True
sage: a.parent()
Symbolic Ring
Note that equations exist in the symbolic ring::
sage: E = EllipticCurve('15a'); E
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field
sage: symbolic_expression(E)
x*y + y^2 + y == x^3 + x^2 - 10*x - 10
sage: symbolic_expression(E) in SR
True
If ``x`` is a list or tuple, create a vector of symbolic expressions::
sage: v = symbolic_expression([x,1]); v
(x, 1)
sage: v.base_ring()
Symbolic Ring
sage: v = symbolic_expression((x,1)); v
(x, 1)
sage: v.base_ring()
Symbolic Ring
sage: v = symbolic_expression((3,1)); v
(3, 1)
sage: v.base_ring()
Symbolic Ring
sage: E = EllipticCurve('15a'); E
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field
sage: v = symbolic_expression([E,E]); v
(x*y + y^2 + y == x^3 + x^2 - 10*x - 10, x*y + y^2 + y == x^3 + x^2 - 10*x - 10)
sage: v.base_ring()
Symbolic Ring
Likewise, if ``x`` is a vector, create a vector of symbolic expressions::
sage: u = vector([1, 2, 3])
sage: v = symbolic_expression(u); v
(1, 2, 3)
sage: v.parent()
Vector space of dimension 3 over Symbolic Ring
If ``x`` is a list or tuple of lists/tuples/vectors, create a matrix of symbolic expressions::
sage: M = symbolic_expression([[1, x, x^2], (x, x^2, x^3), vector([x^2, x^3, x^4])]); M
[ 1 x x^2]
[ x x^2 x^3]
[x^2 x^3 x^4]
sage: M.parent()
Full MatrixSpace of 3 by 3 dense matrices over Symbolic Ring
If ``x`` is a matrix, create a matrix of symbolic expressions::
sage: A = matrix([[1, 2, 3], [4, 5, 6]])
sage: B = symbolic_expression(A); B
[1 2 3]
[4 5 6]
sage: B.parent()
Full MatrixSpace of 2 by 3 dense matrices over Symbolic Ring
If ``x`` is a function, for example defined by a ``lambda`` expression, create a
symbolic function::
sage: f = symbolic_expression(lambda z: z^2 + 1); f
z |--> z^2 + 1
sage: f.parent()
Callable function ring with argument z
sage: f(7)
50
If ``x`` is a list or tuple of functions, or if ``x`` is a function that returns a list
or tuple, create a callable symbolic vector::
sage: symbolic_expression([lambda mu, nu: mu^2 + nu^2, lambda mu, nu: mu^2 - nu^2])
(mu, nu) |--> (mu^2 + nu^2, mu^2 - nu^2)
sage: f = symbolic_expression(lambda uwu: [1, uwu, uwu^2]); f
uwu |--> (1, uwu, uwu^2)
sage: f.parent()
Vector space of dimension 3 over Callable function ring with argument uwu
sage: f(5)
(1, 5, 25)
sage: f(5).parent()
Vector space of dimension 3 over Symbolic Ring
TESTS:
Lists, tuples, and vectors of length 0 become vectors over a symbolic ring::
sage: symbolic_expression([]).parent()
Vector space of dimension 0 over Symbolic Ring
sage: symbolic_expression(()).parent()
Vector space of dimension 0 over Symbolic Ring
sage: symbolic_expression(vector(QQ, 0)).parent()
Vector space of dimension 0 over Symbolic Ring
If a matrix has dimension 0, the result is still a matrix over a symbolic ring::
sage: symbolic_expression(matrix(QQ, 2, 0)).parent()
Full MatrixSpace of 2 by 0 dense matrices over Symbolic Ring
sage: symbolic_expression(matrix(QQ, 0, 3)).parent()
Full MatrixSpace of 0 by 3 dense matrices over Symbolic Ring
Also functions defined using ``def`` can be used, but we do not advertise it as a use case::
sage: def sos(x, y):
....: return x^2 + y^2
sage: symbolic_expression(sos)
(x, y) |--> x^2 + y^2
Functions that take a varying number of arguments or keyword-only arguments are not accepted::
sage: def variadic(x, *y):
....: return x
sage: symbolic_expression(variadic)
Traceback (most recent call last):
...
TypeError: unable to convert <function variadic at 0x...> to a symbolic expression
sage: def function_with_keyword_only_arg(x, *, sign=1):
....: return sign * x
sage: symbolic_expression(function_with_keyword_only_arg)
Traceback (most recent call last):
...
TypeError: unable to convert <function function_with_keyword_only_arg at 0x...>
to a symbolic expression
"""
from sage.symbolic.expression import Expression
from sage.symbolic.ring import SR
from sage.modules.free_module_element import is_FreeModuleElement
from sage.structure.element import is_Matrix

if isinstance(x, Expression):
return x
elif hasattr(x, '_symbolic_'):
return x._symbolic_(SR)
elif isinstance(x, (tuple, list)) or is_FreeModuleElement(x):
expressions = [symbolic_expression(item) for item in x]
if not expressions:
# Make sure it is symbolic also when length is 0
return vector(SR, 0)
if is_FreeModuleElement(expressions[0]):
return matrix(expressions)
return vector(expressions)
elif is_Matrix(x):
if not x.nrows() or not x.ncols():
# Make sure it is symbolic and of correct dimensions
# also when a matrix dimension is 0
return matrix(SR, x.nrows(), x.ncols())
rows = [symbolic_expression(row) for row in x.rows()]
return matrix(rows)
elif callable(x):
from inspect import signature, Parameter
try:
s = signature(x)
except ValueError:
pass
else:
if all(param.kind in (Parameter.POSITIONAL_ONLY, Parameter.POSITIONAL_OR_KEYWORD)
for param in s.parameters.values()):
vars = [SR.var(name) for name in s.parameters.keys()]
result = x(*vars)
if isinstance(result, (tuple, list)):
return vector(SR, result).function(*vars)
else:
return SR(result).function(*vars)
return SR(x)


from . import desolvers
Loading

0 comments on commit 32ed4a5

Please sign in to comment.