Skip to content

Commit

Permalink
sagemathgh-38883: provide the tilde species of a species
Browse files Browse the repository at this point in the history
    
See https://mathoverflow.net/questions/480823/the-tilde-species

Dependencies: sagemath#38446
    
URL: sagemath#38883
Reported by: Martin Rubey
Reviewer(s): Frédéric Chapoton
  • Loading branch information
Release Manager committed Dec 5, 2024
2 parents 61995a7 + 3a6efe2 commit 74511fb
Showing 1 changed file with 49 additions and 0 deletions.
49 changes: 49 additions & 0 deletions src/sage/rings/species.py
Original file line number Diff line number Diff line change
Expand Up @@ -1575,6 +1575,55 @@ def is_atomic(self):
"""
return self.is_molecular() and len(self.support()[0]) == 1

def tilde(self):
r"""
Return the tilde species of ``self``.
The tilde species `\tilde F` of a species `F` has as
structures the set of pairs `(s, a)`, consisting of an
`F`-structure `s` and an automorphism `a` of `s`.
We use https://mathoverflow.net/a/480852 to compute it.
EXAMPLES::
sage: from sage.rings.species import AtomicSpecies, MolecularSpecies, PolynomialSpecies
sage: M = MolecularSpecies("X")
sage: P = PolynomialSpecies(QQ, "X")
sage: sortkey = lambda x: (len(x[1]), sum(x[1].coefficients()), str(x[0]))
sage: n=4; table(sorted([(m, P.monomial(m).tilde()) for m in M.subset(n)], key=sortkey))
X^4 X^4
X^2*E_2 2*X^2*E_2
{((1,2)(3,4),)} 2*{((1,2)(3,4),)}
X*C_3 3*X*C_3
C_4 4*C_4
E_2^2 4*E_2^2
Pb_4 4*Pb_4
X*E_3 X*E_3 + X^2*E_2 + X*C_3
Eo_4 Eo_4 + 2*X*C_3 + Pb_4
P_4 2*P_4 + E_2^2 + Pb_4 + C_4
E_4 E_4 + E_2^2 + X*C_3 + P_4 + C_4
sage: P.<X,Y> = PolynomialSpecies(QQ)
sage: E2 = PolynomialSpecies(QQ, "X")(SymmetricGroup(2))
sage: E2(X*Y).tilde()
2*E_2(XY)
"""
P = self.parent()
M = P._indices
P_one = P.one()
one = ZZ.one()
result = P.zero()
for m, c in self:
result_m = P_one
for a, e in m:
G, pi = a.permutation_group()
result_a = P.sum(P(G.centralizer(g), pi)
for g in G.conjugacy_classes_representatives())
result_m *= result_a ** e
result += c * result_m
return result

def hadamard_product(self, other):
r"""
Compute the hadamard product of ``self`` and ``other``.
Expand Down

0 comments on commit 74511fb

Please sign in to comment.