##Neural Art
This is a tensorflow implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
Basic usage:
neural_style.py --style_image <image.jpg> --content_image <image.jpg>
Custom Weights definition:
neural_style.py -c ./images/brad_pitt.jpg -s ./images/picasso_selfport1907.jpg -cw 10 -sw 100 -n pitt
<img src=https://github.com/ioanachelu/neural-art/blob/master/output/'pitt'_step_999.png width=256>
--content [-c]
: Content image path. Default is './images/content.jpg'--style [-s]
: Style image path. Default is './images/style.jpg'--iters [-i]
: Number of steps/iterations. Default is 1000--output_dir [-o]
: Output directory. Default is './output'--content_weight [-cw]
: Content weight. Default is 5e0--style_weight [-sw]
: Style weight. Default is 1e2--tv_weight [-tvw]
: Total variation denoising weight. Default is 1e-3--output_image [-n]
: Output image name. Default is 'neural_art'
Images are initialized with white noise and optimised with Adam Optimizer.
We perform style reconstructions using the conv1_1, conv2_1, conv3_1, conv4_1, and conv5_1 layers and content reconstructions using the conv4_2 layer. The style layers have equal weights.
The feature maps are extracted using a pretrained VGG network from Caffe. The weights are imported using caffe-tensorflow after updating the models from Model Zoo with upgrade_net_proto_text
and upgrade_net_proto_binary