Package pyalgs implements algorithms in the "Algorithms" book (http://algs4.cs.princeton.edu/home/) and Robert Sedgwick's Algorithms course using Python (Part I and Part II)
More details are provided in the docs for implementation, complexities and further info.
Run the following command to install pyalgs using pip
$ pip install pyalgs
- Data Structure
- Stack
- Linked List
- Array
- Queue
- Linked List
- Array
- Bag
- HashSet
- HashMap
- Separate Chaining
- Linear Probing
- Binary Search Tree
- Red Black Tree
- Priority Queue
- MinPQ
- MaxPQ
- IndexMinPQ
- Graph
- Simple graph
- Edge weighted graph
- Directed graph (digraph)
- Directed edge weight graph
- Search Tries (Symbol table with string-based keys)
- R-way search tries
- Ternary search tries
- Stack
- Algorithms
- Sorting
- Selection Sort
- Insertion Sort
- Shell Sort
- Merge Sort
- Quick Sort
- 3-Ways Quick Sort
- Heap Sort
- Selection
- Binary Search
- Shuffling
- Knuth
- Union Find
- Quick Find
- Weighted Quick Union with path compression
- Sorting
- Graph Algorithms
- Search
- Depth First Search
- Breadth First Search
- Connectivity
- Connected Components
- Strongly Connected Components
- Topological Sorting
- Depth First Reverse Post Order
- Directed Cycle Detection
- Minimum Spanning Tree
- Kruskal
- Prim (Lazy)
- Prim (Eager)
- Shortest Path
- Dijkstra
- Topological Sort (for directed acyclic graph, namely dag)
- Bellman-Ford (for graph with negative weight as well)
- MaxFlow MinCut
- Ford-Fulkerson
- Search
- Strings
- Longest Repeated Substring
- String Sorting
- LSD (Least Significant Digit first radix sorting)
- MSD (Most Significant Digit first radix sorting)
- 3-Ways String Quick Sort
- String Search
- Brute force
- Rabin Karp
- Boyer Moore
- Knuth Morris Pratt
Stack
from pyalgs.data_structures.commons.stack import Stack
stack = Stack.create()
stack.push(10)
stack.push(1)
print [i for i in stack.iterate()]
print stack.is_empty()
print stack.size()
popped_item = stack.pop()
print popped_item
Queue
from pyalgs.data_structures.commons.queue import Queue
queue = Queue.create()
queue.enqueue(10)
queue.enqueue(20)
queue.enqueue(30)
print [i for i in queue.iterate()]
print queue.size()
print queue.is_empty()
deleted_item = queue.dequeue())
print deleted_item
Bag
from pyalgs.data_structures.commons.bag import Bag
bag = Bag.create()
bag.add(10)
bag.add(20)
bag.add(30)
print [i for i in bag.iterate()]
print bag.size()
print bag.is_empty()
Minimum Priority Queue
from pyalgs.data_structures.commons.priority_queue import MinPQ
pq = MinPQ.create()
pq.enqueue(10)
pq.enqueue(5)
pq.enqueue(12)
pq.enqueue(14)
pq.enqueue(2)
print pq.is_empty()
print pq.size()
print [i for i in pq.iterate()]
deleted = pq.del_min()
print(deleted)
Maximum Priority Queue
from pyalgs.data_structures.commons.priority_queue import MaxPQ
pq = MaxPQ.create()
pq.enqueue(10)
pq.enqueue(5)
pq.enqueue(12)
pq.enqueue(14)
pq.enqueue(2)
print pq.is_empty()
print pq.size()
print [i for i in pq.iterate()]
deleted = pq.del_max()
print deleted
Symbol Table using Binary Search Tree
from pyalgs.data_structures.commons.binary_search_tree import BinarySearchTree
bst = BinarySearchTree.create()
bst.put("one", 1)
bst.put("two", 2)
bst.put("three", 3)
bst.put("six", 6)
bst.put("ten", 10)
for key in bst.keys():
print(key)
print bst.get("one"))
print bst.contains_key("two")
print bst.size()
print bst.is_empty()
bst.delete("one")
Symbol Table using Left Leaning Red Black Tree
from pyalgs.data_structures.commons.binary_search_tree import BinarySearchTree
bst = BinarySearchTree.create_red_black_tree()
bst.put("one", 1)
bst.put("two", 2)
bst.put("three", 3)
bst.put("six", 6)
bst.put("ten", 10)
print bst.get("one"))
print bst.contains_key("two")
for key in bst.keys():
print(key)
print bst.size()
print bst.is_empty()
bst.delete("one")
Symbol Table using Hashed Map
from pyalgs.data_structures.commons.hashed_map import HashedMap
map = HashedMap.create()
map.put("one", 1)
map.put("two", 2)
map.put("three", 3)
map.put("six", 6)
map.put("ten", 10)
print map.get("one"))
print map.contains_key("two")
for key in map.keys():
print(key)
print map.size()
print map.is_empty()
map.delete("one")
Symbol Table using Hashed Set
from pyalgs.data_structures.commons.hashed_set import HashedSet
set = HashedSet.create()
set.add("one")
set.add("two")
set.add("three")
set.add("six")
set.add("ten")
print set.contains("two")
for key in set.iterate():
print(key)
print set.size()
print set.is_empty()
set.delete("one")
Undirected Graph
from pyalgs.data_structures.graphs.graph import Graph
def create_graph():
G = Graph(100)
G.add_edge(1, 2)
G.add_edge(1, 3)
print([i for i in G.adj(1)])
print([i for i in G.adj(2)])
print([i for i in G.adj(3)])
print(G.vertex_count())
return G
Directed Graph
from pyalgs.data_structures.graphs.graph import Digraph
def create_digraph():
G = Digraph(100)
G.add_edge(1, 2)
G.add_edge(1, 3)
print([i for i in G.adj(1)])
print([i for i in G.adj(2)])
print([i for i in G.adj(3)])
print(G.vertex_count())
return G
Edge Weighted Graph
from pyalgs.data_structures.graphs.graph import EdgeWeightGraph, Edge
def create_edge_weighted_graph():
g = EdgeWeightedGraph(8)
g.add_edge(Edge(0, 7, 0.16))
g.add_edge(Edge(2, 3, 0.17))
g.add_edge(Edge(1, 7, 0.19))
g.add_edge(Edge(0, 2, 0.26))
g.add_edge(Edge(5, 7, 0.28))
print([edge for edge in G.adj(3)])
print(G.vertex_count())
print(', '.join([edge for edge in G.edges()]))
return g
Directed Edge Weighted Graph
from pyalgs.data_structures.graphs.graph import DirectedEdgeWeightedGraph, Edge
def create_edge_weighted_digraph():
g = DirectedEdgeWeightedGraph(8)
g.add_edge(Edge(0, 1, 5.0))
g.add_edge(Edge(0, 4, 9.0))
g.add_edge(Edge(0, 7, 8.0))
g.add_edge(Edge(1, 2, 12.0))
return g
Flow Network ( for max-flow min-cut problem)
from pyalgs.data_structures.graphs.graph import FlowNetwork, FlowEdge
def create_flow_network():
g = FlowNetwork(8)
g.add_edge(FlowEdge(0, 1, 10))
g.add_edge(FlowEdge(0, 2, 5))
g.add_edge(FlowEdge(0, 3, 15))
g.add_edge(FlowEdge(1, 4, 9))
g.add_edge(FlowEdge(1, 5, 15))
g.add_edge(FlowEdge(1, 2, 4))
g.add_edge(FlowEdge(2, 5, 8))
g.add_edge(FlowEdge(2, 3, 4))
g.add_edge(FlowEdge(3, 6, 16))
g.add_edge(FlowEdge(4, 5, 15))
g.add_edge(FlowEdge(4, 7, 10))
g.add_edge(FlowEdge(5, 7, 10))
g.add_edge(FlowEdge(5, 6, 15))
g.add_edge(FlowEdge(6, 2, 6))
g.add_edge(FlowEdge(6, 7, 10))
return g
Symbol Table using R-ways Search Tries
from pyalgs.data_structures.strings.search_tries import RWaySearchTries
st = RWaySearchTries()
st.put("one", 1)
st.put("two", 2)
st.put("three", 3)
st.put("six", 6)
st.put("ten", 10)
for key in st.keys():
print(key)
print st.get("one"))
print st.contains_key("two")
print st.size()
print st.is_empty()
st.delete("one")
for key in st.keys_with_prefix('t'):
print(key)
Symbol Table using Ternary Search Tries
from pyalgs.data_structures.strings.search_tries import TernarySearchTries
st = TernarySearchTries()
st.put("one", 1)
st.put("two", 2)
st.put("three", 3)
st.put("six", 6)
st.put("ten", 10)
for key in st.keys():
print(key)
print st.get("one"))
print st.contains_key("two")
print st.size()
print st.is_empty()
st.delete("one")
for key in st.keys_with_prefix('t'):
print(key)
Union Find
from pyalgs.algorithms.commons.union_find import UnionFind
uf = UnionFind.create(10)
uf.union(1, 3)
uf.union(2, 4)
uf.union(1, 5)
print(uf.connected(1, 3))
print(uf.connected(3, 5))
print(uf.connected(1, 2))
print(uf.connected(1, 4))
Sorting
The sorting algorithms sort an array in ascending order
Selection Sort
from pyalgs.algorithms.commons.sorting import SelectionSort
a = [4, 2, 1]
SelectionSort.sort(a)
print(a)
Insertion Sort
from pyalgs.algorithms.commons.sorting import InsertionSort
a = [4, 2, 1]
InsertionSort.sort(a)
print(a)
Shell Sort
from pyalgs.algorithms.commons.sorting import ShellSort
a = [4, 2, 1, 23, 4, 5, 6, 7, 8, 9, 20, 11, 13, 34, 66]
ShellSort.sort(a)
print(a)
Merge Sort
from pyalgs.algorithms.commons.sorting import MergeSort
a = [4, 2, 1, 23, 4, 5, 6, 7, 8, 9, 20, 11, 13, 34, 66]
MergeSort.sort(a)
print(a)
Quick Sort
from pyalgs.algorithms.commons.sorting import QuickSort
a = [4, 2, 1, 23, 4, 5, 6, 7, 8, 9, 20, 11, 13, 34, 66]
QuickSort.sort(a)
print(a)
3-Ways Quick Sort
from pyalgs.algorithms.commons.sorting import ThreeWayQuickSort
a = [4, 2, 1, 23, 4, 5, 6, 7, 8, 9, 20, 11, 13, 34, 66]
ThreeWayQuickSort.sort(a)
print(a)
Heap Sort
from pyalgs.algorithms.commons.sorting import HeapSort
a = [4, 2, 1, 23, 4, 5, 6, 7, 8, 9, 20, 11, 13, 34, 66]
HeapSort.sort(a)
print(a)
Selection
Binary Selection
from pyalgs.algorithms.commons.selecting import BinarySelection
from pyalgs.algorithms.commons.util import is_sorted
a = [1, 2, 13, 22, 123]
assert is_sorted(a)
print BinarySelection.index_of(a, 13)
Shuffle
Knuth Shuffle
from pyalgs.algorithms.commons.shuffling import KnuthShuffle
a = [1, 2, 13, 22, 123]
KnuthShuffle.shuffle(a)
print(a)
Depth First Search
from pyalgs.algorithms.graphs.search import DepthFirstSearch
g = create_graph()
s = 0
dfs = DepthFirstSearch(g, s)
for v in range(1, g.vertex_count()):
if dfs.hasPathTo(v):
print(str(s) + ' is connected to ' + str(v))
print('path is ' + ' => '.join([str(i) for i in dfs.pathTo(v)]))
Breadth First Search
from pyalgs.algorithms.graphs.search import BreadthFirstSearch
g = create_graph()
s = 0
dfs = BreadthFirstSearch(g, s)
for v in range(1, g.vertex_count()):
if dfs.hasPathTo(v):
print(str(s) + ' is connected to ' + str(v))
print('path is ' + ' => '.join([str(i) for i in dfs.pathTo(v)]))
Connected Components
This is for undirected graph
from pyalgs.algorithms.graphs.connectivity import ConnectedComponents
G = create_graph()
cc = ConnectedComponents(G)
print('connected component count: ' + str(cc.count()))
for v in range(G.vertex_count()):
print('id[' + str(v) + ']: ' + str(cc.id(v)))
for v in range(G.vertex_count()):
r = randint(0, G.vertex_count()-1)
if cc.connected(v, r):
print(str(v) + ' is connected to ' + str(r))
Strongly Connected Components
This is for directed graph
from pyalgs.algorithms.graphs.connectivity import StronglyConnectedComponents
G = create_graph()
cc = StronglyConnectedComponents(G)
print('strongly connected component count: ' + str(cc.count()))
for v in range(G.vertex_count()):
print('id[' + str(v) + ']: ' + str(cc.id(v)))
for v in range(G.vertex_count()):
r = randint(0, G.vertex_count()-1)
if cc.connected(v, r):
print(str(v) + ' is connected to ' + str(r))
Topological Sort
from pyalgs.algorithms.graphs.topological_sort import DepthFirstOrder
G = create_graph()
topological_sort = DepthFirstOrder(G)
print(' => '.join([str(i) for i in topological_sort.postOrder()]))
Minimum Spanning Tree (Kruskal)
from pyalgs.algorithms.graphs.minimum_spanning_trees import KruskalMST
g = create_edge_weighted_graph()
mst = KruskalMST(g)
tree = mst.spanning_tree()
for e in tree:
print(e)
Minimum Spanning Tree (Prim Lazy)
from pyalgs.algorithms.graphs.minimum_spanning_trees import LazyPrimMST
g = create_edge_weighted_graph()
mst = LazyPrimMST(g)
tree = mst.spanning_tree()
for e in tree:
print(e)
Minimum Spanning Tree (Prim Eager)
from pyalgs.algorithms.graphs.minimum_spanning_trees import EagerPrimMST
g = create_edge_weighted_graph()
mst = EagerPrimMST(g)
tree = mst.spanning_tree()
for e in tree:
print(e)
Directed Cycle Detection:
from pyalgs.algorithms.graphs.directed_cycle import DirectedCycle
dag = create_dag()
dc = DirectedCycle(dag)
assertFalse(dc.hasCycle())
Shortest Path (Dijkstra)
from pyalgs.algorithms.graphs.shortest_path import DijkstraShortestPath
g = create_edge_weighted_digraph()
s = 0
dijkstra = DijkstraShortestPath(g, s)
for v in range(1, g.vertex_count()):
if dijkstra.hasPathTo(v):
print(str(s) + ' is connected to ' + str(v))
print('shortest path is ' + ' .. '.join([str(i) for i in dijkstra.shortestPathTo(v)]))
print('path length is ' + str(dijkstra.path_length_to(v)))
Shortest Path (Topological Sort)
from pyalgs.algorithms.graphs.shortest_path import TopologicalSortShortestPath
from pyalgs.algorithms.graphs.directed_cycle import DirectedCycle
g = create_edge_weighted_digraph()
assert not DirectedCycle(g).hasCycle()
s = 0
dijkstra = TopologicalSortShortestPath(g, s)
for v in range(1, g.vertex_count()):
if dijkstra.hasPathTo(v):
print(str(s) + ' is connected to ' + str(v))
print('shortest path is ' + ' .. '.join([str(i) for i in dijkstra.shortestPathTo(v)]))
print('path length is ' + str(dijkstra.path_length_to(v)))
Shortest Path (Bellman-Ford for positive and negative edge graph)
from pyalgs.algorithms.graphs.shortest_path import BellmanFordShortestPath
from pyalgs.algorithms.graphs.directed_cycle import DirectedCycle
g = create_edge_weighted_digraph()
s = 0
dijkstra = BellmanFordShortestPath(g, s)
for v in range(1, g.vertex_count()):
if dijkstra.hasPathTo(v):
print(str(s) + ' is connected to ' + str(v))
print('shortest path is ' + ' .. '.join([str(i) for i in dijkstra.shortestPathTo(v)]))
print('path length is ' + str(dijkstra.path_length_to(v)))
MaxFlow MinCut (Ford-Fulkerson)
from pyalgs.algorithms.graphs.max_flow import FordFulkersonMaxFlow
network = create_flow_network()
ff = FordFulkersonMaxFlow(network, 0, 7)
print('max-flow: '+str(ff.max_flow_value()))
Longest Repeated Substring
from pyalgs.algorithms.strings.longest_repeated_substring import LongestRepeatedSubstringSearch
start, len = LongestRepeatedSubstringSearch.lrs('Hello World', 'World Record')
print('Hello World'[start:(start+len+1)])
Sort (LSD)
from pyalgs.algorithms.strings.sorting import LSD
LSD.sort(['good', 'cool', 'done', 'come'])
Sort (MSD)
from pyalgs.algorithms.strings.sorting import MSD
words = 'more details are provided in the docs for implementation, complexities and further info'.split(' ')
print(words)
MSD.sort(words)
print(words)
Sort (3-Ways String Quick Sort)
from pyalgs.algorithms.strings.sorting import String3WayQuickSort
words = 'more details are provided in the docs for implementation, complexities and further info'.split(' ')
print(words)
String3WayQuickSort.sort(words)
print(words)
Substring Search (Brute force)
from pyalgs.algorithms.strings.substring_search import BruteForceSubstringSearch
ss = BruteForceSubstringSearch('find')
print(ss.search_in('I can find it here'))
print(ss.search_in('It is not here'))
Substring Search (Rabin Karp)
from pyalgs.algorithms.strings.substring_search import RabinKarp
ss = RabinKarp('find')
print(ss.search_in('I can find it here'))
print(ss.search_in('It is not here'))
Substring Search (Boyer Moore)
from pyalgs.algorithms.strings.substring_search import BoyerMoore
ss = BoyerMoore('find')
print(ss.search_in('I can find it here'))
print(ss.search_in('It is not here'))
Substring Search (Knuth Morris Pratt)
from pyalgs.algorithms.strings.substring_search import KnuthMorrisPratt
ss = KnuthMorrisPratt('find')
print(ss.search_in('I can find it here'))
print(ss.search_in('It is not here'))