Skip to content

Datasets for Knowledge Graph Completion with textual information about the entities

License

Notifications You must be signed in to change notification settings

villmow/datasets_knowledge_embedding

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Datasets for Knowledge Graph Completion with Textual Information about Entities

I needed textual information about the entities in knowledge completion datasets so I aquired it. I'm sharing it here, no proof for correctness. Use it with caution.

Under other/ you can find other (mostly toyish) KGC datasets where no text matching has been done.

FB15k / FB15k-237

These datasets are based on the Freebase Knowledge Graph and entities are mentioned by their Freebase id. As the Freebase KG is archived and not in use anymore, I matched the entities with Wikidata entities and obtained metadata from Wikidata. Wikidata entities contain a freebase_id relation, which was used to match the entities. However, not all entities could be resolved that way so I queried DBPedia for the remaining.

There still remained about ~40 entities for which no textual information could be found.

See the entity2wikidata.json file for metadata about the Freebase entities.

def freebase2wikidata(entities):
    """
    This method constructs a dictionary mapping an freebase id to some wikidata entities.


    :param entities: an iterable of string entities
    :return:
    """
    import requests
    from SPARQLWrapper import SPARQLWrapper, JSON
    sparql = SPARQLWrapper("http://dbpedia.org/sparql")
    sparql.setReturnFormat(JSON)

    def dbpedia_with_freebase(entities):
        """
        :param entities: list of entities
        :return: dict: { "freebase" : { "wikidata1" : {},
                                        "wikidata2" : {},
                                      },
                        ...}
        """
        ### Part 1 ####
        # Query DBPedia for Wikidata Ids

        # finds all wikidata_ids that have this freebase id
        dbpedia_query = """PREFIX dbpedia: <http://dbpedia.org/resource/>
        SELECT DISTINCT ?other WHERE {
            ?obj (owl:sameAs) <http://rdf.freebase.com/ns/%s>.
            ?obj (owl:sameAs) ?other .
            FILTER (strstarts(str(?other), 'http://www.wikidata.org/entity/'))
        }"""

        res = {}
        for e in entities:
            q = dbpedia_query % e[1:].replace('/', '.')  # /m/xxxx -> m.xxxx
            sparql.setQuery(q)
            results = sparql.query().convert()

            for result in results["results"]["bindings"]:
                if e not in res:
                    res[e] = {}

                wd = result['other']['value'].replace(
                    'http://www.wikidata.org/entity/', '')
                res[e][wd] = {}
        return res

    def wikidata_with_freebase(entities):
        """

        :param entities: list of freebase entities
        :return: dict {
                      '/m/01bs9f': {'Q13582652': {'alternatives': set(),
                                                  'description': 'engineer specialising
                                                                  in design, construction
                                                                  and maintenance of the
                                                                  built environment',
                                                  'label': 'civil engineer',
                                                  'wikipedia': set()
                                                  }
                                   },
                     '/m/01cky2': ...
                     }
        """
        query_wikidata_with_freebase = '''
        PREFIX wikibase: <http://wikiba.se/ontology#>
        PREFIX wd: <http://www.wikidata.org/entity/>
        PREFIX wdt: <http://www.wikidata.org/prop/direct/>
        PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
    
        SELECT DISTINCT ?wd ?fb ?wdLabel ?wdDescription ?alternative ?sitelink
        WHERE {
          ?wd wdt:P646 ?fb .
          OPTIONAL { ?wd schema:description ?itemdesc . }
          OPTIONAL { ?wd skos:altLabel ?alternative . 
                       FILTER (lang(?alternative) = "en").
                     }
          OPTIONAL { ?sitelink schema:about ?wd . 
                       ?sitelink schema:inLanguage "en" .
                       FILTER (SUBSTR(str(?sitelink), 1, 25) = "https://en.wikipedia.org/") .
                     } .
          VALUES ?fb { "%s" }
          SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }
    
        }'''
        url = 'https://query.wikidata.org/bigdata/namespace/wdq/sparql'
        res = {}

        for ents in zip(*(iter(entities),) * 100):
            query_ = query_wikidata_with_freebase % '" "'.join(ents)
            data = requests.get(url, params={'query': query_, 'format': 'json'}).json()
            for item in data['results']['bindings']:
                wd = item['wd']['value'].replace('http://www.wikidata.org/entity/', '')
                fb = item['fb']['value']
                label = item['wdLabel']['value'] if 'wdLabel' in item else None
                desc = item['wdDescription']['value'] if 'wdDescription' in item else None
                alias = {item['alternative']['value']} if 'alternative' in item else set()
                sitelink = {item['sitelink']['value']} if 'sitelink' in item else set()

                if fb not in res:
                    res[fb] = {}

                if wd not in res[fb]:
                    res[fb][wd] = {'label': label,
                                   'description': desc,
                                   'wikipedia': sitelink,
                                   'alternatives': alias}

                res[fb][wd]['wikipedia'] |= sitelink
                res[fb][wd]['alternatives'] |= alias
        return res

    def wikidata_with_wikidata(entities):
        """

        :param dict entities: { "freebase" : { "wikidata1" : {},
                                        "wikidata2" : {},
                                      },
                        ...}
        :return: dict {
                      '/m/01bs9f': {'Q13582652': {'alternatives': set(),
                                                  'description': 'engineer specialising
                                                                  in design, construction
                                                                  and maintenance of the
                                                                  built environment',
                                                  'label': 'civil engineer',
                                                  'wikipedia': set()
                                                  }
                                   },
                     '/m/01cky2': ...
                     }
        """
        query_wd_with_wd = '''PREFIX wikibase: <http://wikiba.se/ontology#>
                   PREFIX wd: <http://www.wikidata.org/entity/>
                   PREFIX wdt: <http://www.wikidata.org/prop/direct/>
                   PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

        SELECT DISTINCT ?wd ?fb ?wdLabel ?wdDescription ?alternative ?sitelink
            WHERE {
              BIND(wd:%s AS ?wd).
              OPTIONAL { ?wd schema:description ?itemdesc . }
              OPTIONAL { ?wd skos:altLabel ?alternative . 
                           FILTER (lang(?alternative) = "en").
                         }
              OPTIONAL { ?sitelink schema:about ?wd . 
                           ?sitelink schema:inLanguage "en" .
                           FILTER (SUBSTR(str(?sitelink), 1, 25) = "https://en.wikipedia.org/") .
                         } .
              SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }

            }'''
        url = 'https://query.wikidata.org/bigdata/namespace/wdq/sparql'

        res = {}
        for fb, wd_ids in entities.items():
            for wd_id in wd_ids:
                query_ = query_wd_with_wd % wd_id
                data = requests.get(url,
                                    params={'query': query_, 'format': 'json'}).json()
                for item in data['results']['bindings']:
                    wd = item['wd']['value'].replace('http://www.wikidata.org/entity/',
                                                     '')
                    # fb = item['fb']['value']
                    label = item['wdLabel']['value'] if 'wdLabel' in item else None
                    desc = item['wdDescription'][
                        'value'] if 'wdDescription' in item else None
                    alias = {
                    item['alternative']['value']} if 'alternative' in item else set()
                    sitelink = {
                    item['sitelink']['value']} if 'sitelink' in item else set()

                    if fb not in res:
                        res[fb] = {}

                    if wd not in res[fb]:
                        res[fb][wd] = {'label': label,
                                         'description': desc,
                                         'wikipedia': sitelink,
                                         'alternatives': alias}

                    res[fb][wd]['wikipedia'] |= sitelink
                    res[fb][wd]['alternatives'] |= alias
        return res

    # lets first try to find the freebase entities in wikidata
    result = wikidata_with_freebase(entities)
    logging.info("Found %s freebase entities in wikidata (from total %s)." %
                    (len(result), len(entities)))

    # then find the remaining ids in dbpedia
    missing_entities = set(entities) - set(result.keys())
    result_missing = dbpedia_with_freebase(missing_entities)

    # and query the wikidata information afterwards
    result_missing = wikidata_with_wikidata(result_missing)
    logging.info("Found %s missing entities via dbpedia in wikidata (from total %s "
                 "missing entities)." %
                 (len(result_missing), len(missing_entities)))

    # merge the two dicts
    result = {**result, **result_missing}
    # and remove the sets
    for fb, wds in result.items():
        for wd_id, stats in wds.items():
            result[fb][wd_id]['wikipedia'] = stats['wikipedia'].pop() if stats[
                'wikipedia'] else None
            result[fb][wd_id]['alternatives'] = list(stats['alternatives'])

    logging.info("Final: Found %s freebase entities in wikidata (from total %s)." %
                 (len(result), len(entities)))

    return result

WN18 / WN18RR

Transforming it back to Text

I wanted to work with the datasets WN18 and WN18RR that contain 18/11 relations from wordnet data.

The original WN18RR dataset has the following form:

02174461  _hypernym 02176268
05074057  _derivationally_related_form  02310895
08390511  _synset_domain_topic_of 08199025
02045024  _member_meronym 02046321
01257145 _derivationally_related_form 07488875
...

I wanted to have the textual representation of the entities, but only the wordnet offsets are given as entites, transforming them back is problematic cause they are ambiguous within the 4 datafiles from wordnet.

For example 01257145 _derivationally_related_form 07488875 has two offsets: 01257145 and 07488875.

01257145 07488875
ADJ sensual.s.02
ADV
NOUN precession.n.02 sensuality.n.01
VERB

I transformed the dataset back to wordnet synsets by validating if the given relation holds between the ambiguous entities.

The transformed textual data then looks like this:

clangor.v.01  _hypernym sound.v.02
straightness.n.02 _derivationally_related_form  straight.a.02
militia.n.01  _synset_domain_topic_of military.n.01
alcidae.n.01  _member_meronym pinguinus.n.01
sensual.s.02  _derivationally_related_form  sensuality.n.01

You can load it into NLTK by executing

from nltk.corpus import wordnet as wn
wn.synset('sensual.s.02')

Working with WN18 (a warning)

As first stated by Toutanova in 2015 and confirmed by Dettmers in 2018, the dataset suffers from informative value, cause >80% of the test triples (e1, r1, e2) can be found in the training set with another relation: (e1, r2, e2) or (e2, r2, e1). Dettmers used a rule-based model which learned the inverse relation and achieved state-of-the-art results on that dataset. It should therefore not used for research evaluation anymore.

Source/Credit

I got the WN18RR dataset from TimDettmers/ConvE. As the original WN18 is down, I obtained a copy from Github.

Releases

No releases published

Packages

No packages published