This repository has been archived by the owner on Jun 27, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
executable file
·488 lines (407 loc) · 14.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import random
from typing import List, Tuple, Dict, Optional, Any
import os
from pathlib import Path
import torch
from torch import nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter # type: ignore
from torch.utils.data import DataLoader
from torch.utils.data._utils.collate import default_collate
import numpy as np
from tqdm import tqdm, trange
from filelock import FileLock
import tap
from network import Hiveformer
from utils import (
LossAndMetrics,
load_instructions,
RLBenchEnv,
count_parameters,
load_episodes,
get_max_episode_length,
Actioner,
)
from dataset import RLBenchDataset
class Arguments(tap.Tap):
accumulate_grad_batches: int = 1
cameras: Tuple[str, ...] = ("wrist", "left_shoulder", "right_shoulder")
checkpoint: Optional[Path] = None
checkpoint_period: int = 10
dataset: List[Path]
device: str = "cuda"
xp: Path = Path(__file__).parent / "xp"
valset: Optional[Tuple[Path, ...]] = None
name: str = "hiveformer"
arch: str = "mct"
num_workers: int = 5
max_tries: int = 10
max_episodes_per_taskvar: int = 100
instructions: Optional[Path] = None
cache_size: int = 100
seed: int = 2
tasks: Tuple[str, ...]
variations: Tuple[int, ...] = (0,)
# Train
batch_size: int = 32
lr: float = 0.001
val_freq: int = 200
val_batch_size: int = 100
train_iters: int = 100_000
jitter: bool = False
# tests
headless: bool = False
output: Path = Path(__file__).parent / "records.txt"
# model
depth: int = 4
dim_feedforward: int = 64
hidden_dim: int = 64
instr_size: int = 512
mask_obs_prob: float = 0.0
num_layers: int = 1
def training(
model: nn.Module,
optimizer,
train_loader,
val_loaders,
checkpointer,
loss_and_metrics,
args: Arguments,
writer: SummaryWriter,
):
iter_loader = iter(train_loader)
device = next(model.parameters()).device
with trange(args.train_iters) as tbar:
for step_id in tbar:
try:
sample = next(iter_loader)
except StopIteration:
iter_loader = iter(train_loader)
sample = next(iter_loader)
rgbs = sample["rgbs"].to(device)
pcds = sample["pcds"].to(device)
gripper = sample["gripper"].to(device)
outputs = sample["action"].to(device)
padding_mask = sample["padding_mask"].to(device)
instr = sample["instr"]
if instr is not None:
instr = instr.to(device)
frame_id = sample["frame_id"]
tasks = sample["task"]
if step_id % args.accumulate_grad_batches == 0:
optimizer.zero_grad()
pred = model(
rgbs,
pcds,
padding_mask,
instr,
gripper,
)
train_losses = loss_and_metrics.compute_loss(pred, sample)
train_losses["total"] = sum(list(train_losses.values())) # type: ignore
for n, l in train_losses.items():
writer.add_scalar(f"train-loss/{n}", l, step_id)
writer.add_scalar(f"lr/", args.lr, step_id)
metrics = loss_and_metrics.compute_metrics(pred, sample)
for n, l in metrics.items():
writer.add_scalar(f"train-metrics/{n}", l, step_id)
train_losses["total"].backward() # type: ignore
if step_id % args.accumulate_grad_batches == args.accumulate_grad_batches - 1:
optimizer.step()
if (step_id + 1) % args.val_freq == 0:
if val_loaders is not None:
val_metrics = validation_step(
step_id,
val_loaders,
model,
writer,
loss_and_metrics,
)
model.train()
else:
val_metrics = {}
checkpointer(val_metrics)
tbar.set_postfix(l=float(train_losses["total"]))
def get_log_dir(args: Arguments) -> Path:
log_dir = args.xp / args.name
version = int(os.environ.get("SLURM_JOBID", 0))
while (log_dir / f"version{version}").is_dir():
version += 1
return log_dir / f"version{version}"
class CheckpointCallback:
def __init__(
self,
name: str,
log_dir: Path,
state_dict: Any,
minimizing: bool = True,
checkpoint_period: int = 200,
):
self._name = name
self._minimizing = minimizing
self._best = float("inf") if minimizing else -float("inf")
self._log_dir = log_dir
self._checkpoint_period = checkpoint_period
self._step = 0
self._state_dict = state_dict
def __call__(self, metrics: Dict[str, torch.Tensor]):
self._step += 1
if self._step % self._checkpoint_period != 0:
return
value = int(metrics.get(self._name, 0))
dest = self._log_dir / f"model.step={self._step}-value={value}.pth"
torch.save(self._state_dict, dest)
if (self._minimizing and self._best > value) or (
not self._minimizing and self._best < value
):
best = self._log_dir / "best.pth"
best.unlink(missing_ok=True)
best.symlink_to(dest.resolve())
self._best = value
@torch.no_grad()
def validation_step(
step_id: int,
val_loaders: List[DataLoader],
model,
writer,
loss_and_metrics,
val_iters: int = 5,
):
values = {}
device = next(model.parameters()).device
model.eval()
for val_id, val_loader in enumerate(val_loaders):
for i, sample in enumerate(val_loader):
if i == val_iters:
break
rgbs = sample["rgbs"].to(device)
pcds = sample["pcds"].to(device)
gripper = sample["gripper"].to(device)
outputs = sample["action"].to(device)
padding_mask = sample["padding_mask"].to(device)
instr = sample["instr"]
if instr is not None:
instr = instr.to(device)
frame_id = sample["frame_id"]
tasks = sample["task"]
pred = model(
rgbs,
pcds,
padding_mask,
instr,
gripper,
)
losses: Dict[str, torch.Tensor] = loss_and_metrics.compute_loss(pred, sample)
losses["total"] = torch.stack(list(losses.values())).sum()
for n, l in losses.items():
key = f"val-loss-{val_id}/{n}"
writer.add_scalar(key, l, step_id + i)
if key not in values:
values[key] = torch.Tensor([]).to(device)
values[key] = torch.cat([values[key], l.unsqueeze(0)])
writer.add_scalar(f"lr/", args.lr, step_id + i)
metrics = loss_and_metrics.compute_metrics(pred, sample)
for n, l in metrics.items():
key = f"val-metrics-{val_id}/{n}"
writer.add_scalar(key, l, step_id + i)
if key not in metrics:
values[key] = torch.Tensor([]).to(device)
values[key] = torch.cat([values[key], l.unsqueeze(0)])
key = f"val-loss-{val_id}/total"
print(f"Validation Loss {val_id}: {values[key].mean():.05f}")
key = f"val-metrics-{val_id}/position"
print(f"Validation Position {val_id}: {values[key].mean():.05f}")
return values
def collate_fn(batch: List[Dict]):
keys = batch[0].keys()
return {
key: default_collate([item[key] for item in batch])
if batch[0][key] is not None
else None
for key in keys
}
def get_train_loader(args: Arguments) -> DataLoader:
instruction = load_instructions(
args.instructions, tasks=args.tasks, variations=args.variations
)
if instruction is None:
raise NotImplementedError()
else:
taskvar = [
(task, var)
for task, var_instr in instruction.items()
for var in var_instr.keys()
]
print(f"Valset has {len(taskvar)} taskvars")
max_episode_length = get_max_episode_length(args.tasks, args.variations)
dataset = RLBenchDataset(
root=args.dataset,
taskvar=taskvar,
instructions=instruction,
max_episode_length=max_episode_length,
max_episodes_per_taskvar=args.max_episodes_per_taskvar,
cache_size=args.cache_size,
num_iters=args.train_iters,
cameras=args.cameras, # type: ignore
)
loader = DataLoader(
dataset=dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
collate_fn=collate_fn,
)
return loader
def get_val_loaders(args: Arguments) -> Optional[List[DataLoader]]:
if args.valset is None:
return None
instruction = load_instructions(
args.instructions, tasks=args.tasks, variations=args.variations
)
if instruction is None:
raise NotImplementedError()
else:
taskvar = [
(task, var)
for task, var_instr in instruction.items()
for var in var_instr.keys()
]
print(f"Valset has {len(taskvar)} taskvars")
max_episode_length = get_max_episode_length(args.tasks, args.variations)
loaders = []
for valset in args.valset:
dataset = RLBenchDataset(
root=valset,
taskvar=taskvar,
instructions=instruction,
max_episode_length=max_episode_length,
max_episodes_per_taskvar=args.max_episodes_per_taskvar,
cache_size=args.cache_size,
training=False,
)
loader = DataLoader(
dataset=dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=0,
collate_fn=collate_fn,
)
loaders.append(loader)
print(len(loaders), "validation loaders")
return loaders
def get_model(args: Arguments) -> Tuple[optim.Optimizer, Hiveformer]:
device = torch.device(args.device)
max_episode_length = get_max_episode_length(args.tasks, args.variations)
model = Hiveformer(
depth=args.depth,
dim_feedforward=args.dim_feedforward,
hidden_dim=args.hidden_dim,
instr_size=args.instr_size,
mask_obs_prob=args.mask_obs_prob,
max_episode_length=max_episode_length,
num_layers=args.num_layers,
).to(device)
optimizer_grouped_parameters = [
{"params": [], "weight_decay": 0.0, "lr": args.lr},
{"params": [], "weight_decay": 5e-4, "lr": args.lr},
]
no_decay = ["bias", "LayerNorm.weight", "LayerNorm.bias"]
for name, param in model.named_parameters():
if any(nd in name for nd in no_decay):
optimizer_grouped_parameters[0]["params"].append(param) # type: ignore
else:
optimizer_grouped_parameters[1]["params"].append(param) # type: ignore
optimizer: optim.Optimizer = optim.AdamW(optimizer_grouped_parameters)
if args.checkpoint is not None:
model_dict = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(model_dict["weight"])
optimizer.load_state_dict(model_dict["optimizer"])
print("Number of parameters:")
model_params = count_parameters(model)
print("- model", model_params)
print("Total", model_params)
return optimizer, model
if __name__ == "__main__":
args = Arguments().parse_args()
print(args)
log_dir = get_log_dir(args)
log_dir.mkdir(exist_ok=True, parents=True)
print("Logging:", log_dir)
args.save(str(log_dir / "hparams.json"))
writer = SummaryWriter(log_dir=log_dir)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
device = torch.device(args.device)
optimizer, model = get_model(args)
loss_and_metrics = LossAndMetrics()
# training episode
model_dict = {
"weight": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
checkpointer = CheckpointCallback(
"val-metrics/position",
log_dir,
model_dict,
minimizing=False,
checkpoint_period=args.checkpoint_period,
)
model.train()
val_loaders = get_val_loaders(args)
if args.train_iters > 0:
train_loader = get_train_loader(args)
training(
model,
optimizer,
train_loader,
val_loaders,
checkpointer,
loss_and_metrics,
args,
writer,
)
if val_loaders is not None:
val_metrics = validation_step(
args.train_iters,
val_loaders,
model,
writer,
loss_and_metrics,
val_iters=-1,
)
# last checkpoint
checkpoint = log_dir / f"mtl_{args.seed}_{args.lr}.pth"
torch.save(model_dict, checkpoint)
# evaluation
model.eval()
env = RLBenchEnv(
data_path="",
apply_rgb=True,
apply_pc=True,
apply_cameras=("left_shoulder", "right_shoulder", "wrist"),
headless=args.headless,
)
instruction = load_instructions(args.instructions)
if instruction is None:
raise NotImplementedError()
actioner = Actioner(model=model.model, instructions=instruction)
max_eps_dict = load_episodes()["max_episode_length"]
for task_str in args.tasks:
for variation in args.variations:
success_rate = env.evaluate(
task_str,
actioner=actioner,
max_episodes=max_eps_dict.get(task_str, 6),
variation=variation,
num_demos=500,
demos=None,
log_dir=log_dir,
max_tries=args.max_tries,
)
print("Testing Success Rate {}: {:.04f}".format(task_str, success_rate))
with FileLock(args.output.parent / f"{args.output.name}.lock"):
with open(args.output, "a") as oid:
oid.write(
f"{task_str}-{variation}, na, seed={args.seed}, {success_rate}\n"
)