-
Notifications
You must be signed in to change notification settings - Fork 72
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into kylesayrs/smoothquant-ignore-glm
- Loading branch information
Showing
6 changed files
with
252 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
from datasets import load_dataset | ||
from transformers import AutoModelForCausalLM, AutoTokenizer | ||
|
||
from llmcompressor.transformers import oneshot | ||
|
||
# Select model and load it. | ||
MODEL_ID = "google/gemma-2-9b-it" | ||
model = AutoModelForCausalLM.from_pretrained( | ||
MODEL_ID, | ||
device_map="auto", | ||
torch_dtype="auto", | ||
) | ||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | ||
|
||
# Select calibration dataset. | ||
DATASET_ID = "HuggingFaceH4/ultrachat_200k" | ||
DATASET_SPLIT = "train_sft" | ||
|
||
# Select number of samples. 512 samples is a good place to start. | ||
# Increasing the number of samples can improve accuracy. | ||
NUM_CALIBRATION_SAMPLES = 512 | ||
MAX_SEQUENCE_LENGTH = 2048 | ||
|
||
# Load dataset and preprocess. | ||
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) | ||
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) | ||
|
||
|
||
def process_and_tokenize(example): | ||
text = tokenizer.apply_chat_template(example["messages"], tokenize=False) | ||
return tokenizer( | ||
text, | ||
padding=False, | ||
max_length=MAX_SEQUENCE_LENGTH, | ||
truncation=True, | ||
add_special_tokens=False, | ||
) | ||
|
||
|
||
ds = ds.map(process_and_tokenize, remove_columns=ds.column_names) | ||
|
||
# Configure the quantization algorithm and scheme. | ||
# In this case, we: | ||
# * quantize the weights to fp8 with per-channel scales | ||
# * quantize the activations to fp8 with dynamic per-token scales | ||
# * quantize the kv cache to fp8 with per-tensor scales | ||
recipe = """ | ||
quant_stage: | ||
quant_modifiers: | ||
QuantizationModifier: | ||
ignore: ["lm_head"] | ||
config_groups: | ||
group_0: | ||
weights: | ||
num_bits: 8 | ||
type: float | ||
strategy: channel | ||
dynamic: false | ||
symmetric: true | ||
input_activations: | ||
num_bits: 8 | ||
type: float | ||
strategy: token | ||
dynamic: true | ||
symmetric: true | ||
targets: ["Linear"] | ||
kv_cache_scheme: | ||
num_bits: 8 | ||
type: float | ||
strategy: tensor | ||
dynamic: false | ||
symmetric: true | ||
""" | ||
|
||
# Apply algorithms. | ||
oneshot( | ||
model=model, | ||
dataset=ds, | ||
recipe=recipe, | ||
max_seq_length=MAX_SEQUENCE_LENGTH, | ||
num_calibration_samples=NUM_CALIBRATION_SAMPLES, | ||
) | ||
|
||
print( | ||
"Note: Inference with the quantized kv_cache is not supported. ", | ||
"Please use vLLM for inference with the quantized kv_cache.", | ||
) | ||
# Confirm generations of the quantized model look sane. | ||
print("\n\n") | ||
print("========== SAMPLE GENERATION ==============") | ||
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") | ||
output = model.generate(input_ids, max_new_tokens=100) | ||
print(tokenizer.decode(output[0])) | ||
print("==========================================\n\n") | ||
|
||
# Save to disk compressed. | ||
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV" | ||
model.save_pretrained(SAVE_DIR, save_compressed=True) | ||
tokenizer.save_pretrained(SAVE_DIR) |
101 changes: 101 additions & 0 deletions
101
examples/quantization_kv_cache/phi3.5_fp8_kv_example.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
from datasets import load_dataset | ||
from transformers import AutoModelForCausalLM, AutoTokenizer | ||
|
||
from llmcompressor.transformers import oneshot | ||
|
||
# Select model and load it. | ||
# Phi-3.5 is a special case for KV cache quantization because it has | ||
# fused QKV linear layers. | ||
MODEL_ID = "microsoft/Phi-3.5-mini-instruct" | ||
model = AutoModelForCausalLM.from_pretrained( | ||
MODEL_ID, | ||
device_map="auto", | ||
torch_dtype="auto", | ||
) | ||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | ||
|
||
# Select calibration dataset. | ||
DATASET_ID = "HuggingFaceH4/ultrachat_200k" | ||
DATASET_SPLIT = "train_sft" | ||
|
||
# Select number of samples. 512 samples is a good place to start. | ||
# Increasing the number of samples can improve accuracy. | ||
NUM_CALIBRATION_SAMPLES = 512 | ||
MAX_SEQUENCE_LENGTH = 2048 | ||
|
||
# Load dataset and preprocess. | ||
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) | ||
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) | ||
|
||
|
||
def process_and_tokenize(example): | ||
text = tokenizer.apply_chat_template(example["messages"], tokenize=False) | ||
return tokenizer( | ||
text, | ||
padding=False, | ||
max_length=MAX_SEQUENCE_LENGTH, | ||
truncation=True, | ||
add_special_tokens=False, | ||
) | ||
|
||
|
||
ds = ds.map(process_and_tokenize, remove_columns=ds.column_names) | ||
|
||
# Configure the quantization algorithm and scheme. | ||
# In this case, we: | ||
# * quantize the weights to fp8 with per-tensor scales | ||
# * quantize the activations to fp8 with per-tensor scales | ||
# * quantize the kv cache to fp8 with per-tensor scales | ||
recipe = """ | ||
quant_stage: | ||
quant_modifiers: | ||
QuantizationModifier: | ||
ignore: ["lm_head"] | ||
config_groups: | ||
group_0: | ||
weights: | ||
num_bits: 8 | ||
type: float | ||
strategy: tensor | ||
dynamic: false | ||
symmetric: true | ||
input_activations: | ||
num_bits: 8 | ||
type: float | ||
strategy: tensor | ||
dynamic: false | ||
symmetric: true | ||
targets: ["Linear"] | ||
kv_cache_scheme: | ||
num_bits: 8 | ||
type: float | ||
strategy: tensor | ||
dynamic: false | ||
symmetric: true | ||
""" | ||
|
||
# Apply algorithms. | ||
oneshot( | ||
model=model, | ||
dataset=ds, | ||
recipe=recipe, | ||
max_seq_length=MAX_SEQUENCE_LENGTH, | ||
num_calibration_samples=NUM_CALIBRATION_SAMPLES, | ||
) | ||
|
||
print( | ||
"Note: Inference with the quantized kv_cache is not supported. ", | ||
"Please use vLLM for inference with the quantized kv_cache.", | ||
) | ||
# Confirm generations of the quantized model look sane. | ||
print("\n\n") | ||
print("========== SAMPLE GENERATION ==============") | ||
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") | ||
output = model.generate(input_ids, max_new_tokens=100) | ||
print(tokenizer.decode(output[0])) | ||
print("==========================================\n\n") | ||
|
||
# Save to disk compressed. | ||
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV" | ||
model.save_pretrained(SAVE_DIR, save_compressed=True) | ||
tokenizer.save_pretrained(SAVE_DIR) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters