Skip to content

Commit

Permalink
[Bugfix] [Encoder-Decoder] Bugfix for encoder specific metadata const…
Browse files Browse the repository at this point in the history
…ruction during decode of encoder-decoder models. (#8545)
  • Loading branch information
sroy745 authored Sep 19, 2024
1 parent 4c34ce8 commit 3118f63
Show file tree
Hide file tree
Showing 2 changed files with 69 additions and 31 deletions.
88 changes: 63 additions & 25 deletions tests/worker/test_encoder_decoder_model_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -273,7 +273,8 @@ def test_prepare_prompt(batch_size):
"unsupported for encoder/ "
"decoder models")
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
def test_prepare_decode(batch_size):
@pytest.mark.parametrize("multiple_seqs_per_seq_group", [True, False])
def test_prepare_decode(batch_size, multiple_seqs_per_seq_group):
'''
Test the ability of the encoder/decoder model runner subclass to
produce decode-phase model inputs & attention metadata.
Expand All @@ -288,6 +289,7 @@ def test_prepare_decode(batch_size):
Arguments:
* batch_size
* multiple_seqs_per_seq_group
* backend_name: The attention backend under test
* enforce_eager: Enforce eager mode if True (i.e. no CUDAGraph)
'''
Expand All @@ -305,29 +307,40 @@ def test_prepare_decode(batch_size):
seq_lens: List[int] = []
encoder_seq_lens: List[int] = []
seq_group_metadata_list: List[SequenceGroupMetadata] = []
block_tables = {0: [1]}
block_tables = {
0: [1],
1: [3]
} if multiple_seqs_per_seq_group else {
0: [1]
}
cross_block_table = [2]
for i in range(batch_size):
# make sure all tokens fit into one block
seq_len = i % (model_runner.block_size - 1) + 1
seq_lens.append(seq_len)
seq_data = SequenceData(
array(VLLM_TOKEN_ID_ARRAY_TYPE, (range(seq_len))))
encoder_seq_len = (i + 1) % (model_runner.block_size - 1) + 1
encoder_seq_lens.append(encoder_seq_len)
encoder_seq_data = SequenceData(
array(VLLM_TOKEN_ID_ARRAY_TYPE, (range(encoder_seq_len))))

seq_group_metadata = SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=False,
seq_data={0: seq_data},
seq_data={
0: seq_data,
1: seq_data
} if multiple_seqs_per_seq_group else {0: seq_data},
sampling_params=SamplingParams(temperature=0),
block_tables=block_tables,
encoder_seq_data=encoder_seq_data,
cross_block_table=cross_block_table,
)
assert seq_group_metadata.token_chunk_size == 1
seq_group_metadata_list.append(seq_group_metadata)
seq_lens.extend(
[seq_len for _ in range(len(seq_group_metadata.seq_data))])
encoder_seq_lens.extend(
[encoder_seq_len for _ in range(len(seq_group_metadata.seq_data))])

# Build
# * Decoder model inputs
Expand Down Expand Up @@ -398,19 +411,24 @@ def test_prepare_decode(batch_size):

# Verify block tables are correct for prompts
# - Decoder self-attention
expected = torch.tensor(
[block_tables[0] for _ in range(len(seq_group_metadata_list))],
dtype=torch.int32,
device=model_runner.device)
flattened_block_tables = [
block_table for block_table in block_tables.values()
]
expected = torch.tensor(flattened_block_tables *
len(seq_group_metadata_list),
dtype=torch.int32,
device=model_runner.device)
assert torch.equal(
attn_metadata.block_tables,
expected,
)
# - Encoder/decoder cross-attention
expected = torch.tensor(
[cross_block_table for _ in range(len(seq_group_metadata_list))],
dtype=torch.int32,
device=model_runner.device)
expected = torch.tensor([
cross_block_table for seq_group_metadata in seq_group_metadata_list
for _ in range(len(seq_group_metadata.seq_data))
],
dtype=torch.int32,
device=model_runner.device)
assert torch.equal(
attn_metadata.cross_block_tables,
expected,
Expand Down Expand Up @@ -474,7 +492,8 @@ def test_prepare_decode(batch_size):


@pytest.mark.parametrize("batch_size", list(range(1, 257)))
def test_prepare_decode_cuda_graph(batch_size):
@pytest.mark.parametrize("multiple_seqs_per_seq_group", [True, False])
def test_prepare_decode_cuda_graph(batch_size, multiple_seqs_per_seq_group):
"""
Tests that for encoder-decoder models with CUDA Graph capture and replay
enabled, the tensors used during the decode phase are correctly padded
Expand All @@ -489,32 +508,45 @@ def test_prepare_decode_cuda_graph(batch_size):
enable_chunked_prefill=False,
enforce_eager=False,
)

block_tables = {
0: [1],
1: [3]
} if multiple_seqs_per_seq_group else {
0: [1]
}
seq_lens: List[int] = []
encoder_seq_lens: List[int] = []
seq_group_metadata_list: List[SequenceGroupMetadata] = []
block_tables = {0: [1]}

cross_block_table = [2]
expanded_batch_size = 0
for i in range(batch_size):
# make sure all tokens fit into one block
seq_len = i % (model_runner.block_size - 1) + 1
seq_lens.append(seq_len)
seq_data = SequenceData(
array(VLLM_TOKEN_ID_ARRAY_TYPE, (range(seq_len))))
encoder_seq_len = (i + 1) % (model_runner.block_size - 1) + 1
encoder_seq_lens.append(encoder_seq_len)
encoder_seq_data = SequenceData(
array(VLLM_TOKEN_ID_ARRAY_TYPE, (range(encoder_seq_len))))
seq_group_metadata = SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=False,
seq_data={0: seq_data},
seq_data={
0: seq_data,
1: seq_data
} if multiple_seqs_per_seq_group else {0: seq_data},
sampling_params=SamplingParams(temperature=0),
block_tables=block_tables,
encoder_seq_data=encoder_seq_data,
cross_block_table=cross_block_table,
)
assert seq_group_metadata.token_chunk_size == 1
seq_lens.extend(
[seq_len for _ in range(len(seq_group_metadata.seq_data))])
encoder_seq_lens.extend(
[encoder_seq_len for _ in range(len(seq_group_metadata.seq_data))])
expanded_batch_size = expanded_batch_size + len(
seq_group_metadata.seq_data)
seq_group_metadata_list.append(seq_group_metadata)

model_input = model_runner.prepare_model_input(seq_group_metadata_list)
Expand All @@ -530,8 +562,8 @@ def test_prepare_decode_cuda_graph(batch_size):
# With CUDA Graph capture and replay enabled, the decoder and encoder
# input sequences will be padded. Create the expected padded tensors
# accordingly.
graph_batch_size = _get_graph_batch_size(batch_size)
cuda_graph_pad_size = graph_batch_size - batch_size
graph_batch_size = _get_graph_batch_size(expanded_batch_size)
cuda_graph_pad_size = graph_batch_size - expanded_batch_size
padded_seq_lens = seq_lens + list(itertools.repeat(1, cuda_graph_pad_size))
padded_encoder_seq_lens = encoder_seq_lens + list(
itertools.repeat(1, cuda_graph_pad_size))
Expand Down Expand Up @@ -560,10 +592,13 @@ def test_prepare_decode_cuda_graph(batch_size):

# Verify block tables are correct for prompts
# - Decoder self-attention. Pad the block tables as expected.
expected = [block_tables[0] for _ in range(batch_size)]
expected.extend([[] for _ in range(cuda_graph_pad_size)])
flattened_block_tables = [
block_table for _ in range(len(seq_group_metadata_list))
for block_table in block_tables.values()
]
flattened_block_tables.extend([[] for _ in range(cuda_graph_pad_size)])
expected = make_tensor_with_pad(
expected,
flattened_block_tables,
max_len=64,
pad=0,
dtype=torch.int32,
Expand All @@ -575,7 +610,10 @@ def test_prepare_decode_cuda_graph(batch_size):
)
# - Encoder/decoder cross-attention. Pad the cross-attention block tables
# as expected.
expected = [cross_block_table for _ in range(len(seq_group_metadata_list))]
expected = [
cross_block_table for seq_group_metadata in seq_group_metadata_list
for _ in range(len(seq_group_metadata.seq_data))
]
expected.extend([[] for _ in range(cuda_graph_pad_size)])
expected = make_tensor_with_pad(
expected,
Expand Down
12 changes: 6 additions & 6 deletions vllm/worker/enc_dec_model_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -435,18 +435,18 @@ def _prepare_encoder_model_input_tensors(
encoder_input_tokens_tensor = self._empty_long_tensor()
encoder_input_positions_tensor = self._empty_long_tensor()
cross_slot_mapping_tensor = self._empty_long_tensor()

# Extract cross-attention block tables &
# seq len from each sequence group metadata.
# Cross-attention block tables are empty
# during vLLM memory profiling.
cross_block_tables = []
for seq_group_metadata in seq_group_metadata_list:
encoder_seq_lens.append(
seq_group_metadata.encoder_seq_data.get_len())
cross_block_table = seq_group_metadata.cross_block_table
cross_block_tables.append([] if (
cross_block_table is None) else cross_block_table)
for _ in range(len(seq_group_metadata.seq_data)):
encoder_seq_lens.append(
seq_group_metadata.encoder_seq_data.get_len())
cross_block_table = seq_group_metadata.cross_block_table
cross_block_tables.append([] if (
cross_block_table is None) else cross_block_table)

if (model_input.attn_metadata is not None
and model_input.attn_metadata.use_cuda_graph):
Expand Down

0 comments on commit 3118f63

Please sign in to comment.