-
-
Notifications
You must be signed in to change notification settings - Fork 5.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
331 additions
and
14 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,228 @@ | ||
from typing import List, Optional, Tuple, Type, overload | ||
|
||
import pytest | ||
from transformers import AutoConfig, AutoModelForVision2Seq, AutoTokenizer | ||
|
||
from vllm.multimodal.utils import rescale_video_size, resize_video | ||
from vllm.multimodal.utils import sample_frames_from_video | ||
from vllm.sequence import SampleLogprobs | ||
|
||
from ..conftest import VIDEO_ASSETS, HfRunner, VllmRunner, _VideoAssets | ||
from .utils import check_logprobs_close | ||
|
||
pytestmark = pytest.mark.vlm | ||
|
||
_PREFACE = ( | ||
"A chat between a curious human and an artificial intelligence assistant. " | ||
"The assistant gives helpful, detailed, and polite answers to the human's " | ||
"questions.") | ||
|
||
HF_VIDEO_PROMPTS = VIDEO_ASSETS.prompts({ | ||
"sample_demo_1": f"{_PREFACE}USER: <video>\nWhy is this video funny? ASSISTANT:" | ||
}) | ||
|
||
models = ["llava-hf/LLaVA-NeXT-Video-7B-hf"] | ||
|
||
|
||
def vllm_to_hf_output(vllm_output: Tuple[List[int], str, | ||
Optional[SampleLogprobs]], | ||
model: str): | ||
"""Sanitize vllm output to be comparable with hf output.""" | ||
output_ids, output_str, out_logprobs = vllm_output | ||
|
||
config = AutoConfig.from_pretrained(model) | ||
video_token_id = config.video_token_index | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(model) | ||
eos_token_id = tokenizer.eos_token_id | ||
|
||
hf_output_ids = [ | ||
token_id for idx, token_id in enumerate(output_ids) | ||
if token_id != video_token_id or output_ids[idx - 1] != video_token_id | ||
] | ||
|
||
assert output_str[0] == " " | ||
hf_output_str = output_str[1:] | ||
if hf_output_ids[-1] == eos_token_id: | ||
hf_output_str = hf_output_str + tokenizer.decode(eos_token_id) | ||
|
||
return hf_output_ids, hf_output_str, out_logprobs | ||
|
||
|
||
@overload | ||
def run_test( | ||
hf_runner: Type[HfRunner], | ||
vllm_runner: Type[VllmRunner], | ||
video_assets: _VideoAssets, | ||
model: str, | ||
*, | ||
size_factors: List[float], | ||
dtype: str, | ||
max_tokens: int, | ||
num_logprobs: int, | ||
num_frames: int, | ||
tensor_parallel_size: int, | ||
distributed_executor_backend: Optional[str] = None, | ||
): | ||
... | ||
|
||
|
||
@overload | ||
def run_test( | ||
hf_runner: Type[HfRunner], | ||
vllm_runner: Type[VllmRunner], | ||
video_assets: _VideoAssets, | ||
model: str, | ||
*, | ||
sizes: List[Tuple[int, int]], | ||
dtype: str, | ||
max_tokens: int, | ||
num_logprobs: int, | ||
num_frames: int, | ||
tensor_parallel_size: int, | ||
distributed_executor_backend: Optional[str] = None, | ||
): | ||
... | ||
|
||
|
||
def run_test( | ||
hf_runner: Type[HfRunner], | ||
vllm_runner: Type[VllmRunner], | ||
video_assets: _VideoAssets, | ||
model: str, | ||
*, | ||
size_factors: Optional[List[float]] = None, | ||
sizes: Optional[List[Tuple[int, int]]] = None, | ||
dtype: str, | ||
max_tokens: int, | ||
num_logprobs: int, | ||
num_frames: int, | ||
tensor_parallel_size: int, | ||
distributed_executor_backend: Optional[str] = None, | ||
): | ||
videos = [ | ||
sample_frames_from_video(asset.np_ndarrays, num_frames) | ||
for asset in video_assets] | ||
|
||
for video in videos: | ||
print(video.shape) | ||
|
||
if size_factors is not None: | ||
inputs_per_video = [( | ||
[prompt for _ in size_factors], | ||
[rescale_video_size(video, factor) for factor in size_factors], | ||
) for video, prompt in zip(videos, HF_VIDEO_PROMPTS)] | ||
elif sizes is not None: | ||
inputs_per_video = [( | ||
[prompt for _ in sizes], | ||
[resize_video(video, size) for size in sizes], | ||
) for video, prompt in zip(videos, HF_VIDEO_PROMPTS)] | ||
else: | ||
raise ValueError("You must provide either `size_factors` or `sizes`") | ||
|
||
# max_model_len should be greater than image_feature_size | ||
with vllm_runner(model, | ||
dtype=dtype, | ||
max_model_len=4096, | ||
tensor_parallel_size=tensor_parallel_size, | ||
distributed_executor_backend=distributed_executor_backend, | ||
enforce_eager=True) as vllm_model: | ||
vllm_outputs_per_video = [ | ||
vllm_model.generate_greedy_logprobs(prompts, | ||
max_tokens, | ||
num_logprobs=num_logprobs, | ||
videos=videos) | ||
for prompts, videos in inputs_per_video | ||
] | ||
|
||
with hf_runner(model, dtype=dtype, | ||
auto_cls=AutoModelForVision2Seq) as hf_model: | ||
hf_outputs_per_video = [ | ||
hf_model.generate_greedy_logprobs_limit(prompts, | ||
max_tokens, | ||
num_logprobs=num_logprobs, | ||
videos=videos) | ||
for prompts, videos in inputs_per_video | ||
] | ||
|
||
for hf_outputs, vllm_outputs in zip(hf_outputs_per_video, | ||
vllm_outputs_per_video): | ||
# TODO: Check whether using original CLIPVisionModel can improve | ||
# consistency against HF | ||
check_logprobs_close( | ||
outputs_0_lst=hf_outputs, | ||
outputs_1_lst=[ | ||
vllm_to_hf_output(vllm_output, model) | ||
for vllm_output in vllm_outputs | ||
], | ||
name_0="hf", | ||
name_1="vllm", | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("model", models) | ||
@pytest.mark.parametrize( | ||
"size_factors", | ||
[ | ||
# No video | ||
[], | ||
# Single-scale | ||
[1.0], | ||
# Single-scale, batched | ||
[1.0, 1.0, 1.0], | ||
# Multi-scale | ||
[0.25, 0.5, 1.0], | ||
], | ||
) | ||
@pytest.mark.parametrize("dtype", ["half"]) | ||
@pytest.mark.parametrize("max_tokens", [128]) | ||
@pytest.mark.parametrize("num_logprobs", [5]) | ||
@pytest.mark.parametrize("num_frames", [16]) | ||
def test_models(hf_runner, vllm_runner, video_assets, model, size_factors, | ||
dtype, max_tokens, num_logprobs, num_frames) -> None: | ||
"""Inference result should be the same between hf and vllm. | ||
All the image fixtures for the test is under tests/videos. | ||
For huggingface runner, we provide the np.ndarray as input. | ||
For vllm runner, we provide MultiModalDataDict objects | ||
and corresponding MultiModalConfig as input. | ||
Note, the text input is also adjusted to abide by vllm contract. | ||
The text output is sanitized to be able to compare with hf. | ||
""" | ||
run_test( | ||
hf_runner, | ||
vllm_runner, | ||
video_assets, | ||
model, | ||
size_factors=size_factors, | ||
dtype=dtype, | ||
max_tokens=max_tokens, | ||
num_logprobs=num_logprobs, | ||
num_frames=num_frames, | ||
tensor_parallel_size=1, | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("model", models) | ||
@pytest.mark.parametrize( | ||
"sizes", | ||
[[(1669, 2560), (2560, 1669), (183, 488), (488, 183)]], | ||
) | ||
@pytest.mark.parametrize("dtype", ["half"]) | ||
@pytest.mark.parametrize("max_tokens", [128]) | ||
@pytest.mark.parametrize("num_logprobs", [5]) | ||
@pytest.mark.parametrize("num_frames", [16]) | ||
def test_models_fixed_sizes(hf_runner, vllm_runner, video_assets, model, sizes, | ||
dtype, max_tokens, num_logprobs, num_frames) -> None: | ||
run_test( | ||
hf_runner, | ||
vllm_runner, | ||
video_assets, | ||
model, | ||
sizes=sizes, | ||
dtype=dtype, | ||
max_tokens=max_tokens, | ||
num_logprobs=num_logprobs, | ||
num_frames=num_frames, | ||
tensor_parallel_size=1, | ||
) |
Oops, something went wrong.