Skip to content

Commit

Permalink
up
Browse files Browse the repository at this point in the history
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
  • Loading branch information
ruisearch42 committed Jul 17, 2024
1 parent aa102c9 commit dc0e6bb
Show file tree
Hide file tree
Showing 9 changed files with 57 additions and 104 deletions.
6 changes: 3 additions & 3 deletions .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -84,8 +84,8 @@ steps:
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_RAY_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_RAY_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=llava-hf/llava-1.5-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_multimodal_broadcast.py
Expand All @@ -110,7 +110,7 @@ steps:
# We want to test that models which use 2 GPUs work with 4 GPUs, which is why we duplicate them here.
# See https://github.com/vllm-project/vllm/pull/5473#issuecomment-2166601837 for context.
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_RAY_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py

Expand Down
4 changes: 2 additions & 2 deletions vllm/engine/llm_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@
logger = init_logger(__name__)
_LOCAL_LOGGING_INTERVAL_SEC = 5

USE_SPMD_WORKER = envs.VLLM_USE_SPMD_WORKER
USE_SPMD_WORKER = envs.VLLM_USE_RAY_SPMD_WORKER


def _load_generation_config_dict(model_config: ModelConfig) -> Dict[str, Any]:
Expand Down Expand Up @@ -419,7 +419,7 @@ def from_engine_args(
MultiprocessingGPUExecutor)
assert not USE_SPMD_WORKER, (
"multiprocessing distributed executor backend does not "
"support VLLM_USE_SPMD_WORKER=1")
"support VLLM_USE_RAY_SPMD_WORKER=1")
executor_class = MultiprocessingGPUExecutor
else:
from vllm.executor.gpu_executor import GPUExecutor
Expand Down
8 changes: 4 additions & 4 deletions vllm/envs.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@
VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS: bool = False
VLLM_XLA_CACHE_PATH: str = os.path.join(VLLM_CACHE_ROOT, "xla_cache")
VLLM_FUSED_MOE_CHUNK_SIZE: int = 64 * 1024
VLLM_USE_SPMD_WORKER: bool = False
VLLM_USE_RAY_SPMD_WORKER: bool = False
VLLM_USE_RAY_COMPILED_DAG: bool = False
VLLM_WORKER_MULTIPROC_METHOD: str = "fork"
VLLM_ASSETS_CACHE: str = os.path.join(VLLM_CACHE_ROOT, "assets")
Expand Down Expand Up @@ -265,9 +265,9 @@ def get_default_config_root():
# If the env var is set, then all workers will execute as separate
# processes from the engine, and we use the same mechanism to trigger
# execution on all workers.
# Run vLLM with VLLM_USE_SPMD_WORKER=1 to enable it.
"VLLM_USE_SPMD_WORKER":
lambda: bool(os.getenv("VLLM_USE_SPMD_WORKER", 0)),
# Run vLLM with VLLM_USE_RAY_SPMD_WORKER=1 to enable it.
"VLLM_USE_RAY_SPMD_WORKER":
lambda: bool(os.getenv("VLLM_USE_RAY_SPMD_WORKER", 0)),

# If the env var is set, it uses the Ray's compiled DAG API
# which optimizes the control plane overhead.
Expand Down
70 changes: 39 additions & 31 deletions vllm/executor/ray_gpu_executor.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,27 +22,29 @@

logger = init_logger(__name__)

# If the env var is set, it uses the Ray's compiled DAG API
# which optimizes the control plane overhead.
# Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
# Currently, this requires USE_SPMD_WORKER=True.
USE_RAY_COMPILED_DAG = envs.VLLM_USE_RAY_COMPILED_DAG
# If the env var is set, then we do not distinguish between the "driver worker"
# vs other workers. Also, the rank 0 worker will be executed in a remote Ray
# worker. Currently this requires USE_RAY_COMPILED_DAG=True.
USE_SPMD_WORKER = envs.VLLM_USE_SPMD_WORKER


class RayGPUExecutor(DistributedGPUExecutor):

def _init_executor(self) -> None:
if USE_RAY_COMPILED_DAG:
assert USE_SPMD_WORKER, (
"VLLM_USE_RAY_COMPILED_DAG=1 requires VLLM_USE_SPMD_WORKER=1")
if USE_SPMD_WORKER:
# If the env var is set, it uses the Ray's compiled DAG API
# which optimizes the control plane overhead.
# Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
# Currently, this requires USE_RAY_SPMD_WORKER=True.
self.use_ray_compiled_dag = envs.VLLM_USE_RAY_COMPILED_DAG
# If the env var is set, then we do not distinguish between the
# "driver worker" vs other workers. Also, the rank 0 worker will
# be executed in a remote Ray worker. Currently this requires
# USE_RAY_COMPILED_DAG=True.
self.use_ray_spmd_worker = envs.VLLM_USE_RAY_SPMD_WORKER
if self.use_ray_compiled_dag:
assert self.use_ray_spmd_worker, (
"VLLM_USE_RAY_COMPILED_DAG=1 requires "
"VLLM_USE_RAY_SPMD_WORKER=1")
if self.use_ray_spmd_worker:
# TODO: Support SPMD worker for non-DAG Ray executor.
assert USE_RAY_COMPILED_DAG, ("VLLM_USE_SPMD_WORKER=1 requires "
"VLLM_USE_RAY_COMPILED_DAG=1")
assert self.use_ray_compiled_dag, (
"VLLM_USE_RAY_SPMD_WORKER=1 requires "
"VLLM_USE_RAY_COMPILED_DAG=1")

assert self.parallel_config.distributed_executor_backend == "ray"
placement_group = self.parallel_config.placement_group
Expand Down Expand Up @@ -119,10 +121,9 @@ def _init_workers_ray(self, placement_group: "PlacementGroup",
worker_module_name=worker_module_name,
worker_class_name=worker_class_name,
trust_remote_code=self.model_config.trust_remote_code,
use_spmd_worker=USE_SPMD_WORKER,
)

if USE_SPMD_WORKER:
if self.use_ray_spmd_worker:
self.workers.append(worker)
else:
worker_ip = ray.get(worker.get_node_ip.remote())
Expand All @@ -139,7 +140,7 @@ def _init_workers_ray(self, placement_group: "PlacementGroup",
# Else, added to the list of workers.
self.workers.append(worker)

if not USE_SPMD_WORKER and self.driver_dummy_worker is None:
if not self.use_ray_spmd_worker and self.driver_dummy_worker is None:
raise ValueError(
"Ray does not allocate any GPUs on the driver node. Consider "
"adjusting the Ray placement group or running the driver on a "
Expand Down Expand Up @@ -269,15 +270,15 @@ def _driver_execute_model(
Passing None will cause the driver to stop the model execution
loop running in each of the remote workers.
"""
assert not USE_SPMD_WORKER, (
"driver_worker does not exist for VLLM_USE_SPMD_WORKER=1")
assert not self.use_ray_spmd_worker, (
"driver_worker does not exist for VLLM_USE_RAY_SPMD_WORKER=1")
return self.driver_worker.execute_method("execute_model",
execute_model_req)

def execute_model(
self,
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
if not USE_SPMD_WORKER:
if not self.use_ray_spmd_worker:
return super().execute_model(execute_model_req)

if self.forward_dag is None:
Expand Down Expand Up @@ -309,7 +310,7 @@ def _run_workers(
- all_args/all_kwargs: args/kwargs for each worker are specified
individually
"""
if USE_SPMD_WORKER:
if self.use_ray_spmd_worker:
assert not async_run_tensor_parallel_workers_only, (
"async_run_tensor_parallel_workers_only is not supported for "
"spmd mode.")
Expand All @@ -324,7 +325,7 @@ def _run_workers(
# If using SPMD worker, all workers are the same, so we should execute
# the args on all workers. Otherwise, we skip the first worker's args
# because those args will go to the driver worker.
first_worker_args_index: int = 0 if USE_SPMD_WORKER else 1
first_worker_args_index: int = 0 if self.use_ray_spmd_worker else 1
all_worker_args = repeat(args, count) if all_args is None \
else islice(all_args, first_worker_args_index, None)
all_worker_kwargs = repeat(kwargs, count) if all_kwargs is None \
Expand All @@ -348,7 +349,7 @@ def _run_workers(
# In SPMD mode, the driver worker is the same as any other worker,
# so we only explicitly execute on the driver worker if using a
# non-SPMD worker class.
if not USE_SPMD_WORKER:
if not self.use_ray_spmd_worker:
driver_args = args if all_args is None else all_args[0]
driver_kwargs = kwargs if all_kwargs is None else all_kwargs[0]

Expand Down Expand Up @@ -400,19 +401,26 @@ def _compiled_ray_dag(self, enable_asyncio: bool):
])
return forward_dag.experimental_compile(enable_asyncio=enable_asyncio)

def __del__(self):
if self.forward_dag is not None:
self.forward_dag.teardown()
import ray
for worker in self.workers:
ray.kill(worker)

class RayGPUExecutorAsync(RayGPUExecutor, DistributedGPUExecutorAsync):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if not USE_SPMD_WORKER:
self.use_ray_spmd_worker = envs.VLLM_USE_RAY_SPMD_WORKER
if not self.use_ray_compiled_dag:
self.driver_exec_method = make_async(
self.driver_worker.execute_method)

async def execute_model_async(
self,
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
if not USE_SPMD_WORKER:
if not self.use_ray_spmd_worker:
return await super().execute_model_async(execute_model_req)

if self.forward_dag is None:
Expand All @@ -426,8 +434,8 @@ async def _driver_execute_model_async(
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
assert not USE_SPMD_WORKER, (
"driver_worker does not exist for VLLM_USE_SPMD_WORKER=1")
assert not self.use_ray_spmd_worker, (
"driver_worker does not exist for VLLM_USE_RAY_SPMD_WORKER=1")
if self.pp_locks is None:
# This locks each pipeline parallel stage so multiple virtual
# engines can't execute on the same stage at the same time
Expand Down Expand Up @@ -461,8 +469,8 @@ async def _run_task_with_lock(task, lock, *args, **kwargs):
return results[-1]

async def _start_worker_execution_loop(self):
assert not USE_SPMD_WORKER, (
"worker loop is disabled for VLLM_USE_SPMD_WORKER=1")
assert not self.use_ray_spmd_worker, (
"worker loop is disabled for VLLM_USE_RAY_SPMD_WORKER=1")
coros = [
worker.execute_method.remote("start_worker_execution_loop")
for worker in self.non_driver_workers
Expand Down
2 changes: 1 addition & 1 deletion vllm/executor/ray_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def execute_model_spmd(self, execute_model_req: ExecuteModelRequest):
torch.cuda.set_device(self.worker.device)
self.compiled_dag_cuda_device_set = True

return self.worker.execute_model(execute_model_req)
return self.worker._execute_model_spmd(execute_model_req)

ray_import_err = None

Expand Down
39 changes: 4 additions & 35 deletions vllm/executor/ray_xpu_executor.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,12 +30,7 @@
# If the env var is set, it uses the Ray's compiled DAG API
# which optimizes the control plane overhead.
# Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
# Currently, this is not supported yet.
USE_RAY_COMPILED_DAG = envs.VLLM_USE_RAY_COMPILED_DAG
# If the env var is set, then we do not distinguish between the "driver worker"
# vs other workers. Also, the rank 0 worker will be executed in a remote Ray
# worker. Currently this is not supported yet.
USE_SPMD_WORKER = envs.VLLM_USE_SPMD_WORKER


class RayXPUExecutor(DistributedGPUExecutor):
Expand Down Expand Up @@ -77,7 +72,9 @@ def __init__(
# Create the parallel GPU workers.
self._init_workers_ray(placement_group)

self.forward_dag: Optional["ray.dag.CompiledDAG"] = None
self.forward_dag = None
if USE_RAY_COMPILED_DAG:
self.forward_dag = self._compiled_ray_dag(enable_asyncio=False)

# This is non-None when the execute model loop is running
# in the parallel workers. It's a coroutine in the AsyncLLMEngine case.
Expand All @@ -87,10 +84,7 @@ def __init__(
self.extra_execute_model_run_workers_kwargs: Dict[str, Any] = {}

def _init_executor(self) -> None:
assert not USE_RAY_COMPILED_DAG, (
"Compiled DAG is not supported for XPU yet")
assert not USE_SPMD_WORKER, (
"SPMD worker is not supported for XPU yet")
pass

def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Determine the number of available KV blocks.
Expand All @@ -115,10 +109,6 @@ def determine_num_available_blocks(self) -> Tuple[int, int]:

def _init_workers_ray(self, placement_group: "PlacementGroup",
**ray_remote_kwargs):
assert not USE_RAY_COMPILED_DAG, (
"Compiled DAG is not supported for XPU yet")
assert not USE_SPMD_WORKER, (
"SPMD worker is not supported for XPU yet")
if self.parallel_config.tensor_parallel_size == 1:
# For single GPU case, we use a ray worker with constrained memory.
num_gpus = self.cache_config.gpu_memory_utilization
Expand Down Expand Up @@ -250,18 +240,9 @@ def _driver_execute_model(
Passing None will cause the driver to stop the model execution
loop running in each of the remote workers.
"""
assert not USE_SPMD_WORKER, (
"driver_worker does not exist for VLLM_USE_SPMD_WORKER=1")
return self.driver_worker.execute_method("execute_model",
execute_model_req)

def execute_model(
self,
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
assert not USE_SPMD_WORKER, (
"SPMD worker is not supported for XPU yet")
return super().execute_model(execute_model_req)

def add_lora(self, lora_request: LoRARequest) -> bool:
assert lora_request.lora_int_id > 0, "lora_id must be greater than 0."
return self._run_workers(
Expand Down Expand Up @@ -322,7 +303,6 @@ def _run_workers(
return ray_worker_outputs

driver_worker_output = []
assert not USE_SPMD_WORKER
driver_args = args if all_args is None else all_args[0]
driver_kwargs = kwargs if all_kwargs is None else all_kwargs[0]
# Start the driver worker after all the ray workers.
Expand Down Expand Up @@ -393,25 +373,14 @@ def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.driver_exec_method = make_async(self.driver_worker.execute_method)

async def execute_model_async(
self,
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
assert not USE_SPMD_WORKER, (
"SPMD worker is not supported for XPU yet")
return super().execute_model(execute_model_req)

async def _driver_execute_model_async(
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
assert not USE_SPMD_WORKER, (
"driver_worker does not exist for VLLM_USE_SPMD_WORKER=1")
return await self.driver_exec_method("execute_model",
execute_model_req)

async def _start_worker_execution_loop(self):
assert not USE_SPMD_WORKER, (
"worker loop is disabled for VLLM_USE_SPMD_WORKER=1")
coros = [
worker.execute_method.remote("start_worker_execution_loop")
for worker in self.workers
Expand Down
1 change: 0 additions & 1 deletion vllm/worker/cpu_worker.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,7 +171,6 @@ def __init__(
kv_cache_dtype=kv_cache_dtype,
prompt_adapter_config=self.prompt_adapter_config,
is_driver_worker=is_driver_worker)
self.use_spmd_worker = False
# Uninitialized cache engine. Will be initialized by
# initialize_cache.
self.cache_engine: List[CPUCacheEngine]
Expand Down
1 change: 0 additions & 1 deletion vllm/worker/worker.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,6 @@ def __init__(
multimodal_config=multimodal_config,
**speculative_args,
)
self.use_spmd_worker: bool = False
# Uninitialized cache engine. Will be initialized by
# initialize_cache.
self.cache_engine: List[CacheEngine]
Expand Down
Loading

0 comments on commit dc0e6bb

Please sign in to comment.