-
-
Notifications
You must be signed in to change notification settings - Fork 5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Core] Adding Priority Scheduling #5958
Merged
+410
−8
Merged
Changes from 4 commits
Commits
Show all changes
14 commits
Select commit
Hold shift + click to select a range
ab62fe9
add priority scheduling
apatke e488a5b
add priority benchmark
apatke c357254
Merge branch 'main' of https://github.com/vllm-project/vllm
apatke 520d07f
formatting fixes
apatke 783eb2f
changed sp to priority
apatke 5118c60
remove whitespace
apatke b8350ec
code readability
apatke 6ae42e9
Formatting
apatke 22a00a6
Formatting
apatke 2cb1c62
priority check
apatke 263e8f3
formatting
apatke 343c062
change default priority to 0
apatke 4e55c6d
minor optimization
apatke 8d3aefd
Merge conflict resolved
apatke File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,306 @@ | ||
"""Benchmark offline prioritization.""" | ||
import argparse | ||
import json | ||
import random | ||
import time | ||
from typing import List, Optional, Tuple | ||
|
||
from transformers import AutoTokenizer, PreTrainedTokenizerBase | ||
|
||
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS | ||
|
||
|
||
def sample_requests( | ||
dataset_path: str, | ||
num_requests: int, | ||
tokenizer: PreTrainedTokenizerBase, | ||
fixed_output_len: Optional[int], | ||
) -> List[Tuple[str, int, int]]: | ||
if fixed_output_len is not None and fixed_output_len < 4: | ||
raise ValueError("output_len too small") | ||
|
||
# Load the dataset. | ||
with open(dataset_path) as f: | ||
dataset = json.load(f) | ||
# Filter out the conversations with less than 2 turns. | ||
dataset = [data for data in dataset if len(data["conversations"]) >= 2] | ||
# Only keep the first two turns of each conversation. | ||
dataset = [(data["conversations"][0]["value"], | ||
data["conversations"][1]["value"]) for data in dataset] | ||
|
||
# Shuffle the dataset. | ||
random.shuffle(dataset) | ||
|
||
# Filter out sequences that are too long or too short | ||
filtered_dataset: List[Tuple[str, int, int]] = [] | ||
for i in range(len(dataset)): | ||
if len(filtered_dataset) == num_requests: | ||
break | ||
|
||
# Tokenize the prompts and completions. | ||
prompt = dataset[i][0] | ||
prompt_token_ids = tokenizer(prompt).input_ids | ||
completion = dataset[i][1] | ||
completion_token_ids = tokenizer(completion).input_ids | ||
prompt_len = len(prompt_token_ids) | ||
output_len = len(completion_token_ids | ||
) if fixed_output_len is None else fixed_output_len | ||
if prompt_len < 4 or output_len < 4: | ||
# Prune too short sequences. | ||
continue | ||
if prompt_len > 1024 or prompt_len + output_len > 2048: | ||
# Prune too long sequences. | ||
continue | ||
|
||
#Select a equi-probable random priority | ||
priority = 0 if random.random() < 0.5 else 1 | ||
|
||
filtered_dataset.append((prompt, prompt_len, output_len, priority)) | ||
|
||
return filtered_dataset | ||
|
||
|
||
def run_vllm( | ||
requests: List[Tuple[str, int, int]], | ||
model: str, | ||
tokenizer: str, | ||
quantization: Optional[str], | ||
tensor_parallel_size: int, | ||
seed: int, | ||
n: int, | ||
use_beam_search: bool, | ||
trust_remote_code: bool, | ||
dtype: str, | ||
max_model_len: Optional[int], | ||
enforce_eager: bool, | ||
kv_cache_dtype: str, | ||
quantization_param_path: Optional[str], | ||
device: str, | ||
enable_prefix_caching: bool, | ||
enable_chunked_prefill: bool, | ||
max_num_batched_tokens: int, | ||
gpu_memory_utilization: float = 0.9, | ||
download_dir: Optional[str] = None, | ||
) -> float: | ||
from vllm import LLM, SamplingParams | ||
llm = LLM( | ||
model=model, | ||
tokenizer=tokenizer, | ||
quantization=quantization, | ||
tensor_parallel_size=tensor_parallel_size, | ||
seed=seed, | ||
trust_remote_code=trust_remote_code, | ||
dtype=dtype, | ||
max_model_len=max_model_len, | ||
gpu_memory_utilization=gpu_memory_utilization, | ||
enforce_eager=enforce_eager, | ||
kv_cache_dtype=kv_cache_dtype, | ||
quantization_param_path=quantization_param_path, | ||
device=device, | ||
enable_prefix_caching=enable_prefix_caching, | ||
download_dir=download_dir, | ||
enable_chunked_prefill=enable_chunked_prefill, | ||
max_num_batched_tokens=max_num_batched_tokens, | ||
disable_log_stats=False, | ||
) | ||
|
||
# Add the requests to the engine. | ||
prompts = [] | ||
sampling_params = [] | ||
priority = [] | ||
for prompt, _, output_len, _priority in requests: | ||
prompts.append(prompt) | ||
priority.append(_priority) | ||
sampling_params.append( | ||
SamplingParams( | ||
n=n, | ||
temperature=0.0 if use_beam_search else 1.0, | ||
top_p=1.0, | ||
use_beam_search=use_beam_search, | ||
ignore_eos=True, | ||
max_tokens=output_len, | ||
)) | ||
|
||
start = time.perf_counter() | ||
llm.generate(prompts, | ||
sampling_params, | ||
priority=priority, | ||
use_tqdm=True) | ||
end = time.perf_counter() | ||
return end - start | ||
|
||
|
||
def main(args: argparse.Namespace): | ||
print(args) | ||
random.seed(args.seed) | ||
|
||
# Sample the requests. | ||
tokenizer = AutoTokenizer.from_pretrained( | ||
args.tokenizer, trust_remote_code=args.trust_remote_code) | ||
if args.dataset is None: | ||
# Synthesize a prompt with the given input length. | ||
prompt = "hi" * (args.input_len - 1) | ||
requests = [(prompt, args.input_len, args.output_len) | ||
for _ in range(args.num_prompts)] | ||
else: | ||
requests = sample_requests(args.dataset, args.num_prompts, tokenizer, | ||
args.output_len) | ||
|
||
if args.backend == "vllm": | ||
elapsed_time = run_vllm( | ||
requests, args.model, args.tokenizer, args.quantization, | ||
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search, | ||
args.trust_remote_code, args.dtype, args.max_model_len, | ||
args.enforce_eager, args.kv_cache_dtype, | ||
args.quantization_param_path, args.device, | ||
args.enable_prefix_caching, args.enable_chunked_prefill, | ||
args.max_num_batched_tokens, args.gpu_memory_utilization, | ||
args.download_dir) | ||
else: | ||
raise ValueError(f"Unknown backend: {args.backend}") | ||
total_num_tokens = sum(prompt_len + output_len | ||
for _, prompt_len, output_len, priority in requests) | ||
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, " | ||
f"{total_num_tokens / elapsed_time:.2f} tokens/s") | ||
|
||
# Output JSON results if specified | ||
if args.output_json: | ||
results = { | ||
"elapsed_time": elapsed_time, | ||
"num_requests": len(requests), | ||
"total_num_tokens": total_num_tokens, | ||
"requests_per_second": len(requests) / elapsed_time, | ||
"tokens_per_second": total_num_tokens / elapsed_time, | ||
} | ||
with open(args.output_json, "w") as f: | ||
json.dump(results, f, indent=4) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser(description="Benchmark the throughput.") | ||
parser.add_argument("--backend", | ||
type=str, | ||
choices=["vllm", "hf", "mii"], | ||
default="vllm") | ||
parser.add_argument("--dataset", | ||
type=str, | ||
default=None, | ||
help="Path to the dataset.") | ||
parser.add_argument("--input-len", | ||
type=int, | ||
default=None, | ||
help="Input prompt length for each request") | ||
parser.add_argument("--output-len", | ||
type=int, | ||
default=None, | ||
help="Output length for each request. Overrides the " | ||
"output length from the dataset.") | ||
parser.add_argument("--model", | ||
type=str, | ||
default="facebook/opt-125m") | ||
parser.add_argument("--tokenizer", type=str, default=None) | ||
parser.add_argument('--quantization', | ||
'-q', | ||
choices=[*QUANTIZATION_METHODS, None], | ||
default=None) | ||
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1) | ||
parser.add_argument("--n", | ||
type=int, | ||
default=1, | ||
help="Number of generated sequences per prompt.") | ||
parser.add_argument("--use-beam-search", action="store_true") | ||
parser.add_argument("--num-prompts", | ||
type=int, | ||
default=200, | ||
help="Number of prompts to process.") | ||
parser.add_argument("--seed", type=int, default=0) | ||
parser.add_argument('--trust-remote-code', | ||
action='store_true', | ||
help='trust remote code from huggingface') | ||
parser.add_argument( | ||
'--max-model-len', | ||
type=int, | ||
default=None, | ||
help='Maximum length of a sequence (including prompt and output). ' | ||
'If None, will be derived from the model.') | ||
parser.add_argument( | ||
'--dtype', | ||
type=str, | ||
default='auto', | ||
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'], | ||
help='data type for model weights and activations. ' | ||
'The "auto" option will use FP16 precision ' | ||
'for FP32 and FP16 models, and BF16 precision ' | ||
'for BF16 models.') | ||
parser.add_argument('--gpu-memory-utilization', | ||
type=float, | ||
default=0.9, | ||
help='the fraction of GPU memory to be used for ' | ||
'the model executor, which can range from 0 to 1.' | ||
'If unspecified, will use the default value of 0.9.') | ||
parser.add_argument("--enforce-eager", | ||
action="store_true", | ||
help="enforce eager execution") | ||
parser.add_argument( | ||
'--kv-cache-dtype', | ||
type=str, | ||
choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'], | ||
default="auto", | ||
help='Data type for kv cache storage. If "auto", will use model ' | ||
'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. ' | ||
'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)') | ||
parser.add_argument( | ||
'--quantization-param-path', | ||
type=str, | ||
default=None, | ||
help='Path to the JSON file containing the KV cache scaling factors. ' | ||
'This should generally be supplied, when KV cache dtype is FP8. ' | ||
'Otherwise, KV cache scaling factors default to 1.0, which may cause ' | ||
'accuracy issues. FP8_E5M2 (without scaling) is only supported on ' | ||
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is ' | ||
'instead supported for common inference criteria.') | ||
parser.add_argument( | ||
"--device", | ||
type=str, | ||
default="cuda", | ||
choices=["cuda", "cpu"], | ||
help='device type for vLLM execution, supporting CUDA and CPU.') | ||
parser.add_argument( | ||
"--enable-prefix-caching", | ||
action='store_true', | ||
help="enable automatic prefix caching for vLLM backend.") | ||
parser.add_argument("--enable-chunked-prefill", | ||
action='store_true', | ||
help="enable chunked prefill for vLLM backend.") | ||
parser.add_argument('--max-num-batched-tokens', | ||
type=int, | ||
default=None, | ||
help='maximum number of batched tokens per ' | ||
'iteration') | ||
parser.add_argument('--download-dir', | ||
type=str, | ||
default=None, | ||
help='directory to download and load the weights, ' | ||
'default to the default cache dir of huggingface') | ||
parser.add_argument( | ||
'--output-json', | ||
type=str, | ||
default=None, | ||
help='Path to save the throughput results in JSON format.') | ||
|
||
parser.add_argument( | ||
'--scheduling-policy', | ||
type=bool, | ||
default='sp', | ||
help='sp: Strict Priority, fcfs: First Come First Serve') | ||
|
||
args = parser.parse_args() | ||
if args.tokenizer is None: | ||
args.tokenizer = args.model | ||
if args.dataset is None: | ||
assert args.input_len is not None | ||
assert args.output_len is not None | ||
else: | ||
assert args.input_len is None | ||
|
||
main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
is this necessary to add in vllm's codebase? looks like the code duplication is large.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There is already a lot of duplication in our benchmarking and examples scripts ... could be a good separate task for someone to look at to streamline that. I will see if there's someone on my side who can look at it.