Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bug fix for PCA-RDI with 4D cubes + a few new features #642

Merged
merged 10 commits into from
Jul 19, 2024
5 changes: 1 addition & 4 deletions README.rst
Original file line number Diff line number Diff line change
@@ -1,17 +1,14 @@
VIP - Vortex Image Processing package
=====================================

|VIP| |Versions| |travis| |License| |ArXiV| |docs| |codecov| |DOI| |Zenodo| |EMAC|
|VIP| |Versions| |License| |ArXiV| |docs| |codecov| |DOI| |Zenodo| |EMAC|

.. |VIP| image:: https://badge.fury.io/py/vip-hci.svg
:target: https://pypi.python.org/pypi/vip-hci

.. |Versions| image:: https://img.shields.io/badge/Python-3.7%2C%203.8%2C%203.9%2C%203.10%2C%203.11-brightgreen.svg
:target: https://pypi.python.org/pypi/vip-hci

.. |travis| image:: https://travis-ci.com/vortex-exoplanet/VIP.svg?branch=master
:target: https://travis-ci.com/vortex-exoplanet/VIP

.. |License| image:: https://img.shields.io/badge/license-MIT-blue.svg?style=flat
:target: https://github.com/vortex-exoplanet/VIP/blob/master/LICENSE

Expand Down
5 changes: 5 additions & 0 deletions vip_hci/fm/negfc_fmerit.py
Original file line number Diff line number Diff line change
Expand Up @@ -454,6 +454,8 @@ def get_values_optimize(
collapse = algo_options.get("collapse", collapse)
collapse_ifs = algo_options.get("collapse_ifs", "absmean")
nproc = algo_options.get("nproc", 1)
if algo == pca:
mask_rdi = algo_options.get("mask_rdi", None)

if algo == pca_annulus:
res = pca_annulus(
Expand Down Expand Up @@ -493,6 +495,7 @@ def get_values_optimize(
res_tmp = algo(
cube=crop_cube,
angle_list=angs,
cube_ref=cube_ref,
radius_int=radius_int,
fwhm=fwhm,
asize=annulus_width,
Expand All @@ -516,6 +519,7 @@ def get_values_optimize(
res_tmp = algo(
cube=crop_cube,
angle_list=angs,
cube_ref=cube_ref,
radius_int=radius_int,
fwhm=fwhm,
asize=annulus_width,
Expand Down Expand Up @@ -553,6 +557,7 @@ def get_values_optimize(
ifs_collapse_range=ifs_collapse_range,
nproc=nproc,
weights=weights,
mask_rdi=mask_rdi,
verbose=False,
)
else:
Expand Down
1 change: 1 addition & 0 deletions vip_hci/greedy/ipca_fullfr.py
Original file line number Diff line number Diff line change
Expand Up @@ -428,6 +428,7 @@ def _blurring_3d(array, mask_center_sz, fwhm_sz=2):
cube_ref_tmp = None

# 2. Get a first disc estimate, using PCA
pca_params['ncomp'] = final_ncomp[0]
pca_params['cube_ref'] = ref_cube
res = pca(**pca_params, **rot_options)
frame = res[0]
Expand Down
56 changes: 33 additions & 23 deletions vip_hci/preproc/badpixremoval.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,14 +161,14 @@ def frame_fix_badpix_isolated(array, bpm_mask=None, correct_only=False,
ori_nan_mask = np.where(np.isnan(frame))
ind = clip_array(frame, sigma_clip, sigma_clip, bpm_mask,
neighbor=neigh, num_neighbor=num_neig, mad=mad)
bpm_mask = np.zeros_like(frame)
bpm_mask[ind] = 1
bpm_mask = np.zeros(frame.shape, dtype=bool)
bpm_mask[ind] = True
if ignore_nan:
bpm_mask[ori_nan_mask] = 0
bpm_mask[ori_nan_mask] = False
if protect_mask:
cir = disk((cy, cx), protect_mask, shape=bpm_mask.shape)
bpm_mask[cir] = 0
bpm_mask[ind_excl] = 0
bpm_mask[cir] = False
bpm_mask[ind_excl] = False
bpm_mask = bpm_mask.astype('bool')

smoothed = median_filter(frame, size, mode='mirror')
Expand All @@ -193,9 +193,13 @@ def cube_fix_badpix_isolated(array, bpm_mask=None, correct_only=False,
excl_mask=None, cxy=None, mad=False,
ignore_nan=True, verbose=True, full_output=False,
nproc=1):
""" Corrects the bad pixels, marked in the bad pixel mask. The bad pixel is
replaced by the median of the adjacent pixels. This function is very fast
but works only with isolated (sparse) pixels.
"""Correct bad pixels, either marked in input bad pixel mask or identified\
through sigma clipping.

The bad pixels are replaced by the median of the adjacent pixels. This
function is very fast but works only with sparse bad pixels. Consider the
iterative ``vip_hci.preproc.cube_fix_badpix_clump`` function to identify and
correct clumps of bad pixels.

Parameters
----------
Expand Down Expand Up @@ -259,8 +263,8 @@ def cube_fix_badpix_isolated(array, bpm_mask=None, correct_only=False,
Cube with bad pixels corrected.
bpm_mask: 2d or 3d array [if full_output is True]
The bad pixel map or the cube of bad pixel maps
"""

"""
if array.ndim != 3:
raise TypeError('Array is not a 3d array or cube')
if size % 2 == 0:
Expand Down Expand Up @@ -321,6 +325,7 @@ def cube_fix_badpix_isolated(array, bpm_mask=None, correct_only=False,
else:
excl_mask_tmp = None
res = frame_fix_badpix_isolated(array[i], bpm_mask=bpm_mask_tmp,
correct_only=correct_only,
sigma_clip=sigma_clip,
num_neig=num_neig, size=size,
protect_mask=protect_mask,
Expand All @@ -334,7 +339,8 @@ def cube_fix_badpix_isolated(array, bpm_mask=None, correct_only=False,
else:
if verbose:
print("Cleaning frames using ADACS' multiprocessing approach")
# dummy calling the function to create cached version of the code prior to forking
# dummy calling the function to create cached version of the code
# prior to forking
if bpm_mask is not None:
bpm_mask_dum = bpm_mask[0]
else:
Expand All @@ -345,6 +351,7 @@ def cube_fix_badpix_isolated(array, bpm_mask=None, correct_only=False,
excl_mask_dum = None
# point of dummy call
frame_fix_badpix_isolated(array[0], bpm_mask=bpm_mask_dum,
correct_only=correct_only,
sigma_clip=sigma_clip, num_neig=num_neig,
size=size, protect_mask=protect_mask,
excl_mask=excl_mask_dum, verbose=False,
Expand Down Expand Up @@ -373,6 +380,7 @@ def mp_clean_isolated(j, frame, bpm_mask=None, sigma_clip=3,
excl_mask=None, verbose=False, cxy=None,
ignore_nan=True, full_output=True):
sh_res = frame_fix_badpix_isolated(frame, bpm_mask,
correct_only=correct_only,
sigma_clip=sigma_clip,
num_neig=num_neig, size=size,
protect_mask=protect_mask,
Expand Down Expand Up @@ -406,7 +414,8 @@ def _mp_clean_isolated(args):
dict_kwargs = {'bpm_mask': bpm_mask_tmp,
'sigma_clip': sigma_clip, 'num_neig': num_neig,
'size': size, 'protect_mask': protect_mask,
'excl_mask': excl_mask_tmp, 'cxy': (cx[j], cy[j]),
'excl_mask': excl_mask_tmp,
'cxy': (cx[j], cy[j]),
'ignore_nan': ignore_nan}
args.append([j, array[j], dict_kwargs])

Expand All @@ -428,7 +437,7 @@ def _mp_clean_isolated(args):
excl_mask = np.zeros(array.shape[-2:], dtype=bool)
elif excl_mask.ndim == 3:
excl_mask = np.median(excl_mask, axis=0)
elif excl_mask is None:
else:
msg = "Input exclusion mask should have same last 2 dims as array\n"
assert excl_mask.shape == array.shape[-2:], msg
ind_excl = np.where(excl_mask)
Expand All @@ -437,19 +446,19 @@ def _mp_clean_isolated(args):
bpm_mask = np.zeros(array.shape[-2:], dtype=bool)
elif bpm_mask.ndim == 3:
bpm_mask = np.median(bpm_mask, axis=0)
bpm_mask = bpm_mask+excl_mask
all_excl_mask = bpm_mask+excl_mask
ori_nan_mask = np.where(np.isnan(np.nanmean(array, axis=0)))
ind = clip_array(np.nanmean(array, axis=0), sigma_clip, sigma_clip,
bpm_mask, neighbor=neigh, num_neighbor=num_neig,
mad=mad)
final_bpm = np.zeros_like(array[0], dtype=bool)
final_bpm[ind] = 1
all_excl_mask, neighbor=neigh,
num_neighbor=num_neig, mad=mad)
final_bpm = bpm_mask.copy()
final_bpm[ind] = True
if ignore_nan:
final_bpm[ori_nan_mask] = 0
final_bpm[ori_nan_mask] = False
if protect_mask:
cir = disk((cy, cx), protect_mask, shape=final_bpm.shape)
final_bpm[cir] = 0
final_bpm[ind_excl] = 0
final_bpm[cir] = False
final_bpm[ind_excl] = False
final_bpm = final_bpm.astype('bool')
else:
if bpm_mask.ndim == 3:
Expand Down Expand Up @@ -485,8 +494,9 @@ def cube_fix_badpix_annuli(array, fwhm, cy=None, cx=None, sig=5., bpm_mask=None,
min_thr=None, max_thr=None, min_thr_np=None,
bad_values=None, full_output=False):
"""
Function to correct the bad pixels annulus per annulus (centered on the
provided location of the star), in an input frame or cube.
Correct bad pixels in concentric annuli centered on the provided location\
of the star, in an input frame or cube.

This function is faster than ``cube_fix_badpix_clump``; hence to be
preferred in all cases where there is only one bright source with circularly
symmetric PSF. The bad pixel values are replaced by:
Expand Down Expand Up @@ -564,8 +574,8 @@ def cube_fix_badpix_annuli(array, fwhm, cy=None, cx=None, sig=5., bpm_mask=None,
[full_output=True] The bad pixel map or the cube of bpix maps
ann_frame_cumul: 2 or 3d array
[full_output=True] The cube of defined annuli
"""

"""
ndims = array.ndim
assert ndims == 2 or ndims == 3, "Object is not two or three dimensional.\n"

Expand Down
Loading
Loading