Skip to content

Hamiltonian Monte Carlo (HMC) sampling method in Python3, based on the original paper: Simon Duane, Anthony D. Kennedy, Brian J. Pendleton and Duncan Roweth (1987). "Hybrid Monte Carlo". Physics Letters B. 195 (2): 216–222.

License

Notifications You must be signed in to change notification settings

vrettasm/HamiltonianMonteCarlo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

80 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hamiltonian Monte Carlo (HMC)

Hamiltonian Monte Carlo (HMC) sampling method.

References

The original paper, that introduced this method is described in:

  1. Simon Duane, Anthony D. Kennedy, Brian J. Pendleton and Duncan Roweth (1987). "Hybrid Monte Carlo". Physics Letters B. 195 (2): 216–222.

Several implementation details are given in:

  1. Radford M. Neal (1996). "Monte Carlo Implementation". Bayesian Learning for Neural Networks. Springer. pp. 55–98.

The generalized sampling approach is described in:

  1. Francis J. Alexander, Gregory L. Eyink and Juan M. Restrepo (2005). "Accelerated Monte Carlo for Optimal Estimation of Time Series", Journal of Statistical Physics, vol.119, pp: 1331-1345.

Requirements

To ensure smooth execution please install the required modules with:

  $ pip install -r requirements.txt

Examples

Some example on how to use this method can be found below:

  1. Rosenbrock
  2. Multivariate Normal
  3. Ornstein-Uhlenbeck process

About

Hamiltonian Monte Carlo (HMC) sampling method in Python3, based on the original paper: Simon Duane, Anthony D. Kennedy, Brian J. Pendleton and Duncan Roweth (1987). "Hybrid Monte Carlo". Physics Letters B. 195 (2): 216–222.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages