-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #9 from waldronlab/sdgamboa/numeric
Sdgamboa/numeric
- Loading branch information
Showing
16 changed files
with
104,278 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
library(castor) |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Git LFS file not shown
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
library(taxPPro) | ||
library(dplyr) | ||
library(bugphyzz) | ||
library(phytools) | ||
library(castor) | ||
library(cvTools) | ||
library(purrr) | ||
library(tidyr) | ||
library(ggplot2) | ||
|
||
n <- getMRCA( phy = tree, tip = c('g__620', 'g__620')) | ||
all_labels <- c(tree$tip.label, tree$node.label) | ||
all_labels[n] | ||
|
||
## Tree data #### | ||
ltp <- ltp() | ||
tree <- ltp$tree | ||
tip_data <- ltp$tip_data | ||
node_data <- ltp$node_data | ||
gn_tips <- ltp$gn_tips | ||
label_data <- bind_rows( | ||
distinct(select(as_tibble(tip_data), label = tip_label, taxid)), | ||
distinct(select(as_tibble(node_data), label = node_label, taxid)) | ||
) | ||
|
||
## bugphyzz data #### | ||
gt <- physiologies('growth temperature')[[1]] | ||
# cg <- physiologies('coding genes')[[1]] | ||
# w <- physiologies('width')[[1]] | ||
|
||
modifyNumeric <- function(x) { | ||
x |> | ||
dplyr::filter(!is.na(.data$NCBI_ID) | !.data$NCBI_ID == 'unkown') |> | ||
dplyr::filter(!is.na(.data$Attribute_value_min)) |> | ||
dplyr::filter(!is.na(.data$Attribute_value_max)) |> | ||
dplyr::filter(!is.infinite(abs(.data$Attribute_value_min))) |> | ||
dplyr::filter(!is.infinite(abs(.data$Attribute_value_max))) |> | ||
dplyr::group_by(.data$NCBI_ID) |> | ||
dplyr::slice_max( | ||
.data$Confidence_in_curation, n = 1, with_ties = FALSE | ||
) |> | ||
dplyr::mutate( | ||
Attribute_value = mean(.data$Attribute_value_min, .data$Attribute_value_max) | ||
) |> | ||
dplyr::ungroup() |> | ||
dplyr::select(-.data$Attribute_value_min, -.data$Attribute_value_max) |> | ||
dplyr::distinct() | ||
} | ||
|
||
dat <- modifyNumeric(gt) | ||
|
||
## Small checks and loggin | ||
any(duplicated(dat$NCBI_ID)) | ||
mean(dat$NCBI_ID %in% tip_data$taxid) * 100 | ||
mean(tip_data$taxid %in% dat$NCBI_ID) * 100 | ||
|
||
dat <- dat[dat$NCBI_ID %in% tip_data$taxid,] | ||
|
||
values <- dat$Attribute_value | ||
names(values) <- dat$NCBI_ID | ||
|
||
## Create train and test sets #### | ||
foldN <- cvFolds(n = length(values), K = 10) | ||
testSets <- vector('list', 10) | ||
trainSets <- vector('list', 10) | ||
for (i in 1:10) { | ||
foldName <- paste0('Fold', i) | ||
testSets[[i]] <- values[foldN$subsets[foldN$which == i]] | ||
names(testSets)[i] <- foldName | ||
trainSets[[i]] <- values[foldN$subsets[foldN$which != i]] | ||
names(trainSets)[i] <- foldName | ||
} | ||
|
||
## hidden-state-prediction #### | ||
hsp <- vector('list', 10) | ||
for (i in seq_along(trainSets)) { | ||
names(hsp)[i] <- names(trainSets)[i] | ||
dat_subset <- dat[dat$NCBI_ID %in% names(trainSets[[i]]),] | ||
annotated_tips <- left_join( | ||
tip_data, dat_subset, by = c('taxid' = 'NCBI_ID') | ||
) | ||
tip_values <- annotated_tips$Attribute_value | ||
names(tip_values) <- annotated_tips$tip_label | ||
tip_values <- tip_values[tree$tip.label] | ||
# res <- hsp_squared_change_parsimony( | ||
# tree = tree, tip_states = tip_values, weighted = TRUE, | ||
# check_input = TRUE | ||
# ) | ||
res <- hsp_independent_contrasts( | ||
tree = tree, tip_states = tip_values, weighted = TRUE, | ||
check_input = TRUE | ||
) | ||
|
||
statesDF <- data.frame( | ||
label = c(tree$tip.label, tree$node.label), | ||
value = res$states | ||
) |> | ||
filter(label != 'NA') |> # NAs were introduced as character strings | ||
filter(!grepl('^n\\d+$', label)) |> | ||
left_join(label_data, by = 'label') |> | ||
filter(!label %in% ltp$gn_tips) # remove genus tips to avoid duplicated, they are already in the internal nodes | ||
|
||
states <- statesDF$value | ||
names(states) <- statesDF$taxid | ||
|
||
commonNames <- intersect(names(states), names(testSets[[i]])) | ||
hsp[[i]] <- states[commonNames] | ||
} | ||
|
||
## Calculate metrics | ||
metrics <- map2(hsp, testSets, ~ { | ||
predicted_values <- .x | ||
actual_values <- .y | ||
|
||
mse <- mean((predicted_values - actual_values)^2) | ||
rmse <- sqrt(mse) | ||
mae <- mean(abs(predicted_values - actual_values)) | ||
|
||
ss_total <- sum((actual_values - mean(actual_values))^2) | ||
ss_residual <- sum((actual_values - predicted_values)^2) | ||
r_squared <- 1 - (ss_residual / ss_total) | ||
|
||
mape <- mean(abs((actual_values - predicted_values) / actual_values)) * 100 | ||
|
||
evaluation_results <- data.frame( | ||
Metric = c("MSE", "RMSE", "MAE", "R_squared", "MAPE"), | ||
Value = c(mse, rmse, mae, r_squared, mape) | ||
) | ||
|
||
return(evaluation_results) | ||
}) |> | ||
bind_rows(.id = 'Fold') |> | ||
pivot_wider( | ||
names_from = 'Metric', values_from = 'Value' | ||
) | ||
|
||
plotList <- map2(hsp, testSets, ~ { | ||
df <- data.frame(pred = .x, actual = .y) | ||
df |> | ||
ggplot(aes(pred, actual)) + | ||
geom_point() | ||
}) | ||
|
||
ggpubr::ggarrange(plotlist = plotList, ncol = 2, nrow = 5) | ||
|
||
tbls <- map2(hsp, testSets, ~ { | ||
data.frame(hsp = .x, test = .y) | ||
}) |
Oops, something went wrong.