Skip to content

Official implementation of the Interspeech 2024 paper "Lightweight Transducer Based on Frame Level Criterion".

Notifications You must be signed in to change notification settings

wangmengzhi/Lightweight-Transducer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lightweight-Transducer

Official implementation of the Interspeech 2024 paper "Lightweight Transducer Based on Frame Level Criterion".

Install

Usage

Data preparation

Download AISHELL-1 and extract it to the directory data/aishell.

python data/aishell/get_csv.py
python data/aishell/get_vocab.py

Training

python train.py

Parameter averaging

python avg_model.py

Test

python test.py

Speed

Training one epoch takes about five minutes with a single GPU RTX 4090 and CPU i9-13900K.

Results

Testset Sub Del Ins CER
dev 3.79 0.10 0.07 3.96
test 4.10 0.16 0.05 4.31

Pre-trained model

Rescore

Data preparation

Download resource_aishell and extract it to the directory data/aishell.

python data/aishell/get_text.py

Training

../kenlm/build/bin/lmplz -o 3 --text data/aishell/aishell_train.txt --arpa data/aishell/aishell_train.arpa -S 10% --interpolate_unigrams 0

Pre-trained language model

Rescore

python rescore.py

Results

Testset Sub Del Ins CER
dev 3.61 0.10 0.07 3.78
test 3.82 0.16 0.04 4.03

About

Official implementation of the Interspeech 2024 paper "Lightweight Transducer Based on Frame Level Criterion".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages