Skip to content

waspinator/js-segment-annotator

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

73 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

JS Segment Annotator

demo

Javascript image annotation tool based on image segmentation.

  • Label image regions with mouse.
  • Organize labels by class and object
  • Written in vanilla Javascript, with require.js dependency (packaged).
  • Pure client-side implementation of image segmentation.

A browser must support HTML canvas to use this tool.

There is an online demo.

Importing data

Prepare a data.json file that looks like the following. The required fields are labels and imageURLs. The annotationURLs are for existing data and can be omitted. Place the JSON file inside the data/ directory.

{
  "labels": [
    "background",
    "skin",
    "hair",
    "dress",
    "glasses",
    "jacket",
    "skirt"
  ],
  "imageURLs": [
    "data/images/1.jpg",
    "data/images/2.jpg"
  ],
  "annotationURLs": [
    "data/annotations/1.png",
    "data/annotations/2.png"
  ]
}

Know issues

Browser incompatibility

A segmentation result can greatly differ due to the difference in Javascript implementation across Web browsers. The difference stems from numerical precision of floating point numbers, and there is no easy way to produce the exact same result across browsers.

Python tips

Annotation PNG

The annotation PNG file contains label map encoded in RGB value. Do the following to encode an index map.

import numpy as np
from PIL import Image

# Decode
encoded = np.array(Image.open('data/annotations/1.png'))
annotation = np.bitwise_or(np.bitwise_or(
    encoded[:, :, 0].astype(np.uint32),
    encoded[:, :, 1].astype(np.uint32) << 8),
    encoded[:, :, 2].astype(np.uint32) << 16)

print(np.unique(annotation))

# Encode
Image.fromarray(np.stack([
    np.bitwise_and(annotation, 255),
    np.bitwise_and(annotation >> 8, 255),
    np.bitwise_and(annotation >> 16, 255),
    ], axis=2).astype(np.uint8)).save('encoded.png')

JSON

Use JSON module.

import json

with open('data/example.json', 'r') as f:
    dataset = json.load(f)

Using dataURL

Do the following to convert between dataURL and NumPy format.

from PIL import Image
import base64
import io

# Encode
with io.BytesIO() as buffer:
    encoded.save(buffer, format='png')
    data_url = b'data:image/png;base64,' + base64.b64encode(buffer.getvalue())

# Decode
binary = base64.b64decode(data_url.replace(b'data:image/png;base64,', b''))
encoded = Image.open(io.BytesIO(binary))

Matlab tips

Annotation PNG

The annotation PNG file contains label map encoded in RGB value. Do the following to encode an index map.

% Decode

X = imread('data/annotations/0.png');
annotation = X(:, :, 1);
annotation = bitor(annotation, bitshift(X(:, :, 2), 8));
annotation = bitor(annotation, bitshift(X(:, :, 3), 16));

% Encode

X = cat(3, bitand(annotation, 255), ...
           bitand(bitshift(annotation, -8), 255), ...
           bitand(bitshift(annotation, -16)), 255));
imwrite(uint8(X), 'data/annotations/0.png');

JSON

Use the matlab-json package.

Using dataURL

Get the byte encoding tools.

Do the following to convert between dataURL and Matlab format.

% Decode

dataURL = 'data:image/png;base64,...';
png_data = base64decode(strrep(dataURL, 'data:image/png;base64,', ''));
annotation = imdecode(png_data, 'png');

% Encode

png_data = imencode(annotation, 'png');
dataURL = ['data:image/png;base64,', base64encode(png_data)];

Citation

We appreciate if you cite the following article in an academic paper. The tool was originally developed for this work.

@article{tangseng2017looking,
Author        = {Pongsate Tangseng and Zhipeng Wu and Kota Yamaguchi},
Title         = {Looking at Outfit to Parse Clothing},
Eprint        = {1703.01386v1},
ArchivePrefix = {arXiv},
PrimaryClass  = {cs.CV},
Year          = {2017},
Month         = {Mar},
Url           = {http://arxiv.org/abs/1703.01386v1}
}

About

Javascript image annotation tool based on image segmentation.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • JavaScript 95.2%
  • Python 3.5%
  • CSS 1.1%
  • HTML 0.2%