Defocus blur detection via boosting diversity of deep ensemble networks
We have two networks: EFENet and AENet
python==3.6
pytorch==1.1.0
tensorflow==1.5.0
CUHK: Contains 100 testing images of CUHK Dataset and it's GT.
DUT: Contains 500 testing images of DUT Dataset and it's GT.
Test_dataset:
Baidu Netdisk link: https://pan.baidu.com/s/1Uj-i2CJVwt-Tz_d4NdDtEw password: y5kv
Google Drive link: https://drive.google.com/file/d/109c36vRDagDcjUbUtBouausXz0DOkA-w/view?usp=sharing
Results:
Baidu Netdisk link: https://pan.baidu.com/s/1UMN2neErD1G7i889pRhNOA password: 977n
Google Drive link: https://drive.google.com/file/d/1XuiccdbVrB5vUtqHVFCg8Z4US66qXyoo/view?usp=sharing
EFENet:
Baidu Netdisk link: https://pan.baidu.com/s/1BK0B4JNGEtTEXpQgL30vgA password: 3fm0
Google Drive link: https://drive.google.com/file/d/1Ug67nYEBNYYsHRuMlQLz9klxCQNKJIl7/view?usp=sharing
AENet:
Baidu Netdisk link: https://pan.baidu.com/s/1BkI6ufuaJBQafJYfPmDQwQ password: ufpq
Google Drive link: https://drive.google.com/file/d/1LJ_pBAGx6qDD7cboSm1BKuRFUevi38Wu/view?usp=sharing
You can run EFENet/test.py to test EFENet and run AENet/src/test.py to test AENet.