-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Small changes for FlashLFQ writer (#131)
Fixed retention time division by 60. Time is required in minutes for FlashLFQ, it's already in minutues Co-authored-by: William Fondrie <fondriew@gmail.com>
- Loading branch information
1 parent
9fb32cb
commit 0d1f437
Showing
1 changed file
with
138 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
"""This module writes data in the generic format for FlashLFQ. | ||
Details about the format can be found here: | ||
https://github.com/smith-chem-wisc/FlashLFQ/wiki/Identification-Input-Formats#generic | ||
""" | ||
|
||
from pathlib import Path | ||
import logging | ||
|
||
import pandas as pd | ||
|
||
LOGGER = logging.getLogger(__name__) | ||
|
||
|
||
def to_flashlfq(conf, out_file="mokapot.flashlfq.txt"): | ||
"""Save confidenct peptides for quantification with FlashLFQ. | ||
`FlashLFQ <https://github.com/smith-chem-wisc/FlashLFQ>`_ is an open-source | ||
tool for label-free quantification. For mokapot to save results in a | ||
compatible format, a few extra columns are required to be present, which | ||
specify the MS data file name, the theoretical peptide monoisotopic mass, | ||
the retention time, and the charge for each PSM. If these are not present, | ||
saving to the FlashLFQ format is disabled. | ||
Note that protein grouping in the FlashLFQ results will be more accurate if | ||
proteins were added for analysis with mokapot. | ||
Parameters | ||
---------- | ||
conf : Confidence object or tuple of Confidence objects | ||
One or more :py:class:`~mokapot.confidence.LinearConfidence` objects. | ||
out_file : str, optional | ||
The output file to write. | ||
Returns | ||
------- | ||
str | ||
The path to the saved file. | ||
""" | ||
try: | ||
assert not isinstance(conf, str) | ||
iter(conf) | ||
except TypeError: | ||
conf = [conf] | ||
except AssertionError: | ||
raise ValueError("'conf' should be a Confidence object, not a string.") | ||
|
||
flashlfq = pd.concat([_format_flashlfq(c) for c in conf]) | ||
flashlfq.to_csv(str(out_file), sep="\t", index=False) | ||
return out_file | ||
|
||
|
||
def _format_flashlfq(conf): | ||
"""Format peptides for quantification with FlashLFQ | ||
If proteins are provided, use the mokapot protein groups. Else, | ||
use the protein_column. | ||
Parameters | ||
---------- | ||
conf : a LinearConfidence object | ||
A :py:class:`~mokapot.confidence.LinearConfidence` object. | ||
Returns | ||
------- | ||
pandas.DataFrame | ||
The peptides in FlashLFQ format. | ||
""" | ||
# Do some error checking for the required columns: | ||
required = ["filename", "calcmass", "rt", "charge"] | ||
missing = [c for c in required if conf._optional_columns[c] is None] | ||
if missing: | ||
missing = ", ".join([c + "_column" for c in missing]) | ||
raise ValueError( | ||
"The following parameters must be specified when loading a " | ||
"collection of PSMs in order to save them in FlashLFQ format: " | ||
f"{missing}" | ||
) | ||
|
||
if conf._has_proteins: | ||
proteins = conf._proteins | ||
elif conf._protein_column is not None: | ||
proteins = conf._protein_column | ||
else: | ||
proteins = None | ||
|
||
# Get parameters | ||
peptides = conf.peptides | ||
filename_column = conf._optional_columns["filename"] | ||
peptide_column = conf._peptide_column | ||
mass_column = conf._optional_columns["calcmass"] | ||
rt_column = conf._optional_columns["rt"] | ||
charge_column = conf._optional_columns["charge"] | ||
eval_fdr = conf._eval_fdr | ||
|
||
# Create FlashLFQ dataframe | ||
passing = peptides["mokapot q-value"] <= eval_fdr | ||
|
||
out_df = pd.DataFrame() | ||
out_df["File Name"] = peptides.loc[passing, filename_column].apply( | ||
lambda x: Path(x).name | ||
) | ||
|
||
seq = peptides.loc[passing, peptide_column] | ||
base_seq = ( | ||
seq.str.replace(r"[\[\(].*?[\]\)]", "", regex=True) | ||
.str.replace(r"^.*?\.", "", regex=True) | ||
.str.replace(r"\..*?$", "", regex=True) | ||
) | ||
|
||
out_df["Base Sequence"] = base_seq | ||
out_df["Full Sequence"] = seq | ||
out_df["Peptide Monoisotopic Mass"] = peptides.loc[passing, mass_column] | ||
out_df["Scan Retention Time"] = peptides.loc[passing, rt_column] | ||
out_df["Precursor Charge"] = peptides.loc[passing, charge_column] | ||
|
||
if isinstance(proteins, str): | ||
# TODO: Add delimiter sniffing. | ||
prots = peptides.loc[passing, proteins].str.replace("\t", "; ", regex=False) | ||
elif proteins is None: | ||
prots = "" | ||
else: | ||
prots = base_seq.map(proteins.peptide_map.get) | ||
shared = pd.isna(prots) | ||
prots.loc[shared] = base_seq[shared].map(proteins.shared_peptides.get) | ||
|
||
out_df["Protein Accession"] = prots | ||
missing = pd.isna(out_df["Protein Accession"]) | ||
num_missing = missing.sum() | ||
if num_missing: | ||
LOGGER.warning( | ||
"- Discarding %i peptides that could not be mapped to protein " "groups", | ||
num_missing, | ||
) | ||
out_df = out_df.loc[~missing, :] | ||
|
||
return out_df |