Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Standard deviation enhancement #25

Merged
merged 2 commits into from
Jan 6, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 48 additions & 46 deletions src/standard_dev.cpp
Original file line number Diff line number Diff line change
@@ -1,46 +1,48 @@
// statistics.cpp
#include "statistics.h"
#include <omp.h>
#include <cmath>
#include <iostream>
// Function to compute the mean
double computeMean(const std::vector<int>& data, int num_threads) {
double sum = 0.0;

#pragma omp parallel for reduction(+:sum) num_threads(num_threads)
for (size_t i = 0; i < data.size(); i++) {
sum += data[i];
}

return sum / data.size();
}

// Function to compute the standard deviation
double computeStandardDeviation(const std::vector<int>& data, int num_threads) {
double mean = computeMean(data, num_threads);

double variance_sum = 0.0;

#pragma omp parallel for reduction(+:variance_sum) num_threads(num_threads)
for (size_t i = 0; i < data.size(); i++) {
variance_sum += (data[i] - mean) * (data[i] - mean);
}

double variance = variance_sum / data.size();
return std::sqrt(variance);
}


int main() {
// Data set
std::vector<int> data = {1, 2, 3, 4, 5, 6};

// Number of threads for OpenMP
int num_threads = 4;

// Calculate and print the standard deviation
double stddev = computeStandardDeviation(data, num_threads);
std::cout << "Standard Deviation: " << stddev << std::endl;

return 0;
}
// statistics.cpp
#include "statistics.h"
#include <omp.h>
#include <cmath>
#include <iostream>
// Function to compute the mean
double computeMean(const std::vector<int>& data, int num_threads) {
double sum = 0.0;

int num_threads = omp_get_max_threads();
#pragma omp parallel for reduction(+:sum) num_threads(num_threads)
for (size_t i = 0; i < data.size(); i++) {
sum += data[i];
}

return sum / data.size();
}

// Function to compute the standard deviation
double computeStandardDeviation(const std::vector<int>& data, int num_threads) {
double mean = computeMean(data, num_threads);

double variance_sum = 0.0;

int num_threads = omp_get_max_threads();
#pragma omp parallel for reduction(+:variance_sum) num_threads(num_threads)
for (size_t i = 0; i < data.size(); i++) {
variance_sum += (data[i] - mean) * (data[i] - mean);
}

double variance = variance_sum / data.size();
return std::sqrt(variance);
}


int main() {
// Data set
std::vector<int> data = {1, 2, 3, 4, 5, 6};

// Number of threads for OpenMP
int num_threads = 4;

// Calculate and print the standard deviation
double stddev = computeStandardDeviation(data, num_threads);
std::cout << "Standard Deviation: " << stddev << std::endl;

return 0;
}