By Zhang, Qinglong and Rao, Lu and Yang, Yubin
[State Key Laboratory for Novel Software Technology at Nanjing University]
This repo is the official implementation of "Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks".
- 2021/08/18 *
- Adding Grad-CAM, Guided_BP, IG, RISE, Score-CAM and Smooth Grad
- Cluster methods for grouping are supported in Group-CAM
- Adding demo for insertion and deletion
Figure 1: Pipeline of Group-CAM.
ResNet: 'layer4.2', Vgg19: 'features.35'
To visualize a heatmap, run:
python demo.py --arch vgg19 --target_layer features.35 --input Images/ILSVRC2012_val_00000073.JPEG --output base.png
with insertion and deletion curves:
python demo.py --arch vgg19 --target_layer features.35 --input Images/ILSVRC2012_val_00000073.JPEG --output base.png --ins_del
@article{zhql2021gc,
title={Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks},
author={Zhang, Qinglong and Rao, Lu and Yang, Yubin},
journal={arXiv preprint arXiv:2103.13859},
year={2021}
}