Skip to content
This repository has been archived by the owner on May 29, 2020. It is now read-only.
/ karajan Public archive

A conductor of aggregations in Apache Airflow

License

Notifications You must be signed in to change notification settings

wooga/karajan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Karajan

A conductor of aggregations in Apache Airflow

Integration into Airflow

Initialize the Conductor with conf set as the relative path of the configuration. Then build the DAGs with a KarajanID as the first argument, an engine and an output reference for the DAGs.

from karajan.conductor import Conductor
from karajan.engines import ExasolEngine

engine = ExasolEngine(conn_id='exasol', queue='exasol', tmp_schema='agg_tmp')
Conductor(conf='agg').build('agg_user_activity', engine=engine, output=globals())

If the context is parameterized - i.e. has multiple items - for each item a DAG with ID {karajan-id}_{item} will be created.

CLI

run

Run the complete Karajan setup for the previous date:

karajan run {karajan-id}

Run the complete Karajan setup for a date range:

karajan run -s 2017-01-01 -e 2017-03-31 {karajan-id}

Run the Karajan setup for specific items:

karajan run -i jj,jji,jja {karajan-id}

Run the complete Karajan setup limited to a set of target columns:

karajan run -l target[col1,col2] {karajan-id}

The last command will limit the DAGRun to the target and it's direct upstream aggregations. Everything else will be skipped.

Model

Context

name required purpose default
items optional parameterize the aggregtions for those items
defaults optional default values used in template, can also be used without items
item_column if items column name for parameterization
items:
  g9i:
  g9: { userid: fbuserid }
defaults:
  userid: deviceid
item_column: game_key

Targets

name required purpose default
start_date required start date of the DAG
schema required DB Schema of the target table
key_columns required columns to merge new data on
aggregated_columns required column name -> column reference
timeseries_key optional if set, aggregation will be done on per time unit basis
items if context.items list of items or '*'

targets.yml

daily_user_activities:
  start_date: 2017-06-01
  schema: agg
  key_columns:
    - activity_date
    - userid
  aggregated_columns:
    user_logins:
      country:
      logins:
  timeseries_key: activity_date
  items: [g9i,g9]

Aggregations

name required purpose default
query required aggregation query
dependencies optional a list of dependencies
offset optional date offset (>= 0) to run the aggregation for
reruns optional number of last dates (>= 0) to rerun

aggregations.yml

user_logins:
  query: |
    SELECT
      CREATED_DATE as activity_date,
      {{ userid }} as userid,
      LAST_VALUE(COUNTRY) as country,
      COUNT(*) as logins
    FROM
      {{ game_key }}.APP_LOGINS
    WHERE CREATED_DATE BETWEEN '{{ start_date }}' AND '{{ end_date }}'
    GROUP BY 1,2
  dependencies:
    - type: tracking
      schema: '{{ game_key }}'
      table: APP_LOGINS
    - type: delta
      delta: 30d

Dependencies

Tracking

name purpose
schema schema of the table to wait for
table name of the table to wait for
type: tracking
schema: '{{ item }}'
table: APP_LOGINS

Delta

name purpose
delta time to wait since execution period
type: delta
delta: 2h

Task

name purpose
dag_id dag id of the task to wait for
task_id task_id of the task to wait for
type: task
task_id: fill_bookings
dag_id: '{{ item }}'

Target

name purpose
target target table to be used as source
columns optional list of columns of the target table
type: target
target: daily_user_activities
columns: [country]

Transformations

TODO