Skip to content

wuminye/TeTriRF

Repository files navigation

Offical Implementation of TeTriRF

TeTriRF: Temporal Tri-Plane Radiance Fields for Efficient Free-Viewpoint Video (CVPR2024) project page, paper.

This paper presents Temporal Tri-Plane Radiance Fields (TeTriRF), a novel technology that significantly reduces the storage size for Free-Viewpoint Video (FVV) while maintaining low-cost generation and rendering. TeTriRF

Installation

You can follow its installation steps:

git clone https://github.com/wuminye/TeTriRF.git
cd TeTriRF
pip install -r requirements.txt

Pytorch and torch_scatter installation is machine dependent, please install the correct version for your machine.

Please install FFmpeg with libx265 support in your system.

Dataset

This code supports NHR, ReRF, and DyNeRF datasets.

For NHR and ReRF datasets, please use nhr_conversion.py and rerf_to_nhr_conversion.py respectively for data conversions.

For DyNeRF dataset, please use n3d_llf.py for data conversions.

GO

  • Training

    NHR and ReRF scenes:

    $ python gen_train.py

    DyNeRF scenes:

    $ python gen_n3d.py

    Please modify gen_train.py file to specify the config file.

  • Evaluation

    Testing on uncompressed representations:

    $ python gen_test.py

    Rate-distortion curves evaluations (after compression and decompression):

    $ python gen_rate_distortion.py

    Do not forget to modify these python file to specify the config files or folder paths. We use 'wandb' to log results.

  • Render video

    $ python gen_360.py

    Please modify gen_360.py file to specify the config file.

  • Compression

    This command can compress and package the trained sequence into a zip file (in the specified output folder), containing the necessary information for playback.

    $ python tools/compression.py --logdir <path to the output folder> --numframe <number of frames> --qp <compression quality, smaller values mean larger storage and better quality., default:20 >
  • Player WIP...

Acknowledgement

The code base is origined from an awesome DVGO implementation, but it becomes very different from the code base now.

If you're using TeTriRF in your research or applications, please cite using this BibTeX:

@article{wu2023tetrirf,
  title={TeTriRF: Temporal Tri-Plane Radiance Fields for Efficient Free-Viewpoint Video},
  author={Wu, Minye and Wang, Zehao and Kouros, Georgios and Tuytelaars, Tinne},
  journal={arXiv preprint arXiv:2312.06713},
  year={2023}
}

About

official implementation of TeTriRF

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published