Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sculpting fixes #1085

Merged
merged 8 commits into from
Nov 9, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
226 changes: 226 additions & 0 deletions apps/ysculpting/algorithms.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
#pragma once
#include <yocto/yocto_geometry.h>
#include <yocto/yocto_mesh.h>
#include <yocto/yocto_shape.h>

#include <deque>
#include <queue>

using namespace yocto;
using namespace std;

// Taking closest vertex of an intersection
int closest_vertex(const vector<vec3i> &triangles, vec2f uv, int element) {
auto tr = triangles[element];
if (uv.x < 0.5f && uv.y < 0.5f) return tr.x;
if (uv.x > uv.y) return tr.y;
return tr.z;
}

vec3f eval_position(const generic_shape *shape, int element, const vec2f &uv) {
return eval_position(shape->triangles, shape->positions, {element, uv});
}
vec3f eval_normal(const generic_shape *shape, int element, const vec2f &uv) {
return eval_normal(shape->triangles, shape->normals, {element, uv});
}
enum struct axes { x, y, z };
auto const symmetric_axes = vector<std::string>{"asse x", "asse y", "asse z"};

enum struct brush_type { gaussian, texture, smooth };
auto const brushes_names = vector<std::string>{
"gaussian brush", "texture brush", "smooth brush"};

// To obtain symmetric from stroke result
inline vector<pair<vec3f, vec3f>> symmetric_stroke(
vector<pair<vec3f, vec3f>> &pairs, generic_shape *shape, shape_bvh &tree,
vector<int> &symmetric_stroke_sampling, axes &axis) {
vector<pair<vec3f, vec3f>> symmetric_pairs;
if (pairs.empty()) return symmetric_pairs;
for (int i = 0; i < pairs.size(); i++) {
auto ray = ray3f{};
ray.d = pairs[i].first;

if (axis == axes::x) {
ray.o = vec3f{0.0f, ray.d.y, 0.0f};
ray.d = normalize(ray.d - ray.o);
ray.d.x = -ray.d.x;
}

if (axis == axes::y) {
ray.o = vec3f{ray.d.x, 0.0f, 0.0f};
ray.d = normalize(ray.d - ray.o);
ray.d.y = -ray.d.y;
}

if (axis == axes::z) {
ray.o = vec3f{0.0f, ray.d.y, 0.0f};
ray.d = normalize(ray.d - ray.o);
ray.d.z = -ray.d.z;
}

auto inter = intersect_triangles_bvh(
tree, shape->triangles, shape->positions, ray);
if (!inter.hit) continue;
auto pos = eval_position(shape, inter.element, inter.uv);
auto nor = eval_normal(shape, inter.element, inter.uv);
auto pair = std::pair<vec3f, vec3f>{pos, nor};
symmetric_stroke_sampling.push_back(
closest_vertex(shape->triangles, inter.uv, inter.element));
symmetric_pairs.push_back(pair);
}
return symmetric_pairs;
}

// Project a vector on a plane, maintaining vector lenght
inline vec2f project_onto_plane(const mat3f &basis, const vec3f &p) {
auto v = p - dot(p, basis.z) * basis.z;
auto v1 = vec2f{dot(v, basis.x), dot(v, basis.y)};
return v1 * (length(p) / length(v1));
}

// Planar coordinates by local computation between neighbors
inline void compute_coordinates(vector<vec2f> &coords, vector<mat3f> &frames,
vector<vec3f> &positions, int node, int neighbor, float weight) {
auto current_coord = coords[node];
auto edge = positions[node] - positions[neighbor];
auto projection = project_onto_plane(frames[neighbor], edge);
auto new_coord = coords[neighbor] + projection;
auto avg_lenght = (length(current_coord) + length(new_coord)) / 2;
auto new_dir = normalize(current_coord + new_coord);
coords[node] = current_coord == zero2f ? new_coord : new_dir * avg_lenght;

// following doesn't work
// coords[node] = current_coord + (weight * (coords[neighbor] + projection));
}

// Frame by local computation between neighbors
inline void compute_frame(vector<mat3f> &frames, vector<vec3f> &normals,
int node, int neighbor, float weight) {
auto current_dir = frames[node].x;
auto rotation = basis_fromz(normals[neighbor]) *
transpose(basis_fromz(normals[node]));
auto neighbor_dir = frames[neighbor].x;
current_dir = current_dir + (rotation * weight * neighbor_dir);
frames[node].z = normals[node];
frames[node].y = cross(frames[node].z, normalize(current_dir));
frames[node].x = cross(frames[node].y, frames[node].z);
}

// Classic Dijkstra
template <typename Update>
void dijkstra(const geodesic_solver &solver, const vector<int> &sources,
vector<float> &distances, float max_distance, Update &&update) {
auto compare = [&](int i, int j) { return distances[i] > distances[j]; };
std::priority_queue<int, vector<int>, decltype(compare)> queue(compare);

// setup queue
for (auto source : sources) queue.push(source);

while (!queue.empty()) {
int node = queue.top();
queue.pop();

auto distance = distances[node];
if (distance > max_distance) continue; // early exit

for (auto arc : solver.graph[node]) {
auto new_distance = distance + arc.length;

update(node, arc.node, new_distance);

if (new_distance < distances[arc.node]) {
distances[arc.node] = new_distance;
queue.push(arc.node);
}
}
}
}

// Compute initial frames of stroke sampling vertices
inline void compute_stroke_frames(vector<mat3f> &frames,
vector<vec3f> &positions, vector<vec3f> &normals,
vector<int> &stroke_sampling) {
// frames follow stroke direction
for (int i = 0; i < stroke_sampling.size() - 1; i++) {
int curr = stroke_sampling[i];
int next = stroke_sampling[i + 1];
auto dir = positions[next] - positions[curr];
auto z = normals[curr];
auto y = cross(z, normalize(dir));
auto x = cross(y, z);
frames[curr] = {x, y, z};
}

if (stroke_sampling.size() == 1) {
frames[stroke_sampling[0]] = basis_fromz(normals[stroke_sampling[0]]);
} else {
int final = stroke_sampling[stroke_sampling.size() - 1];
int prev = stroke_sampling[stroke_sampling.size() - 2];
auto dir = positions[final] - positions[prev];
auto z = normals[final];
auto y = cross(z, normalize(dir));
auto x = cross(y, z);
frames[final] = {x, y, z};
}

// average frames direction of middle stroke vertices
for (int i = 1; i < stroke_sampling.size() - 1; i++) {
int curr = stroke_sampling[i];
int next = stroke_sampling[i + 1];
int prev = stroke_sampling[i - 1];
auto dir = frames[prev].x + frames[next].x;
auto z = normals[curr];
auto y = cross(z, normalize(dir));
auto x = cross(y, z);
frames[curr] = {x, y, z};
}
}

// To take shape positions indices associate with planar coordinates
inline vector<int> stroke_parameterization(geodesic_solver &solver,
vector<vec2f> &coords, vector<int> &stroke_sampling,
vector<vec3f> &positions, vector<vec3f> &normals, float radius) {
if (stroke_sampling.empty()) return vector<int>{};

// init params
std::set<int> vertices; // to avoid duplicates

auto visited = vector<bool>(positions.size(), false);
for (auto sample : stroke_sampling) visited[sample] = true;

coords = vector<vec2f>(solver.graph.size(), zero2f);
coords[stroke_sampling[0]] = {radius, radius};
vertices.insert(stroke_sampling[0]);
for (int i = 1; i < stroke_sampling.size(); i++) {
auto edge = positions[stroke_sampling[i]] -
positions[stroke_sampling[i - 1]];
coords[stroke_sampling[i]] = {
coords[stroke_sampling[i - 1]].x + length(edge), radius};
vertices.insert(stroke_sampling[i]);
}

auto distances = vector<float>(solver.graph.size(), flt_max);
for (auto sample : stroke_sampling) distances[sample] = 0.0f;

auto frames = vector<mat3f>(positions.size(), identity3x3f);
compute_stroke_frames(frames, positions, normals, stroke_sampling);

auto update = [&](int node, int neighbor, float new_distance) {
vertices.insert(node);
if (!visited[neighbor]) return;
float weight = length(positions[neighbor] - positions[node]) + flt_eps;
weight = 1.0f / weight;
compute_coordinates(coords, frames, positions, node, neighbor, weight);
compute_frame(frames, normals, node, neighbor, weight);
visited[node] = true;
};
dijkstra(solver, stroke_sampling, distances, radius, update);

auto vec_vertices = vector<int>(vertices.begin(), vertices.end());

// conversion in [0, 1]
for (int i = 0; i < vertices.size(); i++)
coords[vec_vertices[i]] /= radius * 2.0f;

return vec_vertices;
}
Loading