Skip to content

Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Notifications You must be signed in to change notification settings

xingjian-zhang/Fast-Partial-Ranking-MNL

Repository files navigation

Fast-Partial-Ranking-MNL

This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper:

Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling.

Jiaqi Ma*, Xingjian Zhang*, and Qiaozhu Mei. WSDM 2022.

(*: Equal contribution.)

Requirements

The code requires the following packages.

more_itertools==8.10.0
networkx==2.5.1
numpy==1.19.5
pandas==1.1.5
pyclustering==0.10.1.2
torch==1.9.0
tqdm==4.62.3

Example Commands to Run the Experiments

  1. Learning single MNL from partial rankings on synthetic data
python3 dag_synthetic.py --num_classes 100 --num_samples 5000  # single MNL
  1. Learning mixture of MNL from partial rankings on synthetic data
python3 dag_synthetic.py --num_classes 60 --num_samples 5000 --alphas [1,1,1]  --init_by_cluster # 3 MNLs with clustering based init
  1. Network formation modeling of synthetic network data
python3 network_synthetic.py -r 0.5 -p 0.5 --fof --ua --pa --loss topk  # run full model with 4 components on a mixed (r,p)-graph
  1. Network formation modeling of Flickr & Microsoft Academic Graph
cd source
wget -4 http://socialnetworks.mpi-sws.mpg.de/data/flickr-growth.txt.gz ../data/
python3 flickr_process.py # process flickr-growth.txt.gz, which is downloaded from http://socialnetworks.mpi-sws.mpg.de/data/flickr-growth.txt.gz
python3 flickr_train.py
# download mag_cli.csv by google drive
python3 mag_process.py  # process mag_cli.csv, which is downloaded from https://drive.google.com/file/d/17bgLs1iR96JW3Rd0mex3IK8qyU-qRElB/view?usp=sharing
python3 mag_train.py

Cite

@article{ma2022fast,
  title={Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling},
  author={Ma, Jiaqi and Zhang, Xingjian and Mei, Qiaozhu},
  journal={Proceedings of the 15th ACM International Conference on Web Search and Data Mining},
  year={2022}
}

About

Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages