Skip to content

xingy038/CTNeRF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CTNeRF: Cross-Time Transformer for Dynamic Neural Radiance Field from Monocular Video

arXiv

CTNeRF: Cross-Time Transformer for Dynamic Neural Radiance Field from Monocular Video
Paper(Arxiv) | Results
Xingyu Miao, Yang Bai, Haoran Duan, Yawen Huang, Fan Wan, Yang Long, Yefeng Zheng
Accepted by Pattern Recognition (PR)

Setup

The code is test with

  • Linux
  • Anaconda 3
  • Python 3.8
  • CUDA 11.8
  • 2 3090 GPU

To get started, please create the conda environment ctnerf by running

conda create --name ctnerf python=3.8
conda activate ctnerf
conda install pytorch=1.13.1 torchvision=0.14.1 cudatoolkit=11.8 matplotlib tensorboard scipy opencv -c pytorch
pip install imageio scikit-image configargparse timm lpips

and install COLMAP manually. Then download MiDaS and RAFT weights

ROOT_PATH=/path/to/the/CTNeRF/folder
cd $ROOT_PATH
wget --no-check-certificate https://filebox.ece.vt.edu/~chengao/free-view-video/weights.zip
unzip weights.zip
rm weights.zip

Dynamic Scene Dataset

The Dynamic Scene Dataset is used to quantitatively evaluate our method. Please download the pre-processed data by running:

cd $ROOT_PATH
wget --no-check-certificate https://filebox.ece.vt.edu/~chengao/free-view-video/data.zip
unzip data.zip
rm data.zip

Training

You can train a model from scratch by running:

cd $ROOT_PATH/
python run_nerf.py --config configs/config_Balloon2.txt

Rendering from pre-trained models

We also provide pre-trained models. You can download them by running:

cd $ROOT_PATH/
wget --no-check-certificate https://filebox.ece.vt.edu/~chengao/free-view-video/logs.zip
unzip logs.zip
rm logs.zip

Then you can render the results directly by running:

python run_nerf.py --config configs/config_Balloon2.txt --render_only --ft_path $ROOT_PATH/logs/Balloon2_H270_CTNeRF_pretrain/300000.tar

Evaluating

Please download the results by running:

cd $ROOT_PATH/
wget --no-check-certificate https://filebox.ece.vt.edu/~chengao/free-view-video/results.zip
unzip results.zip
rm results.zip

Then you can calculate the PSNR/SSIM/LPIPS by running:

cd $ROOT_PATH/utils
python evaluation.py

If you find this code useful for your research, please consider citing the following paper:

@article{MIAO2024110729,
title = {CTNeRF: Cross-time Transformer for dynamic neural radiance field from monocular video},
journal = {Pattern Recognition},
pages = {110729},
year = {2024},
issn = {0031-3203},
doi = {https://doi.org/10.1016/j.patcog.2024.110729},
url = {https://www.sciencedirect.com/science/article/pii/S0031320324004801},
author = {Xingyu Miao and Yang Bai and Haoran Duan and Fan Wan and Yawen Huang and Yang Long and Yefeng Zheng},
keywords = {Dynamic neural radiance field, Monocular video, Scene flow, Transformer}
}

Acknowledgments

Our training code is build upon pixelNeRF, DynamicNeRF, and NSFF. Our flow prediction code is modified from RAFT. Our depth prediction code is modified from MiDaS.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages