- Download the MNIST and CIFAR-10 datasets. See
Data/MNIST/README.md
andData/CIFAR-10/README.md
for details. - Launch
MATLAB
from theUtils
directory, and the runLoadMNIST.m
andLoadCifar10.m
to generate the dataset files.
- To conduct the multiclass logistic regression experiment, first open
main_LR.m
and choose one configuration script file, for example,
%% Section 2: Set parameters (choose one configuration script and comment the others, the configuration scripts can be found in the Config/LR/ folder)
if ~exist('IS_TUNING_PARAMETERS', 'var') || IS_TUNING_PARAMETERS == false
MNIST_stochastic_regret;
% MNIST_stochastic_time;
% MNIST_adversary;
% CIFAR10_stochastic_regret;
% CIFAR10_stochastic_time;
% CIFAR10_adversary;
end
After saving changes to main_LR.m
, type main_LR
in the MATLAB command window.
- To conduct the one-hidden-layer neural network experiment, first open
main_NN.m
and choose one configuration script file, for example,
%% Section 2: Set parameters (choose one configuration script and comment the others, the configuration scripts can be found in the Config/LR/ folder)
if ~exist('IS_TUNING_PARAMETERS', 'var') || IS_TUNING_PARAMETERS == false
MNIST_NN;
% CIFAR10_NN;
end
After saving changes to main_NN.m
, type main_NN
in the MATLAB command window.
├── Algorithms
│ ├── README.m
│ ├── cell_array
│ │ ├── FW.m
│ │ ├── OAW.m
│ │ ├── OFW.m
│ │ ├── ORGFW.m
│ │ ├── OSFW.m
│ │ ├── ROFW.m
│ │ ├── SPIDER_FW.m
│ │ └── SVRG_FW.m
│ └── vector
│ ├── FW.m
│ ├── MFW.m
│ ├── MORGFW.m
│ ├── OAW.m
│ ├── OFW.m
│ ├── ORGFW.m
│ ├── OSFW.m
│ └── ROFW.m
├── Config # configuration scripts
│ ├── LR
│ │ ├── CIFAR10_adversary.m # CIFAR-10 dataset, adversarial online setting
│ │ ├── CIFAR10_stochastic_regret.m # CIFAR-10 dataset, stochastic online setting, report regret v.s. #rounds
│ │ ├── CIFAR10_stochastic_time.m # CIFAR-10 dataset, stochastic optimization setting, report suboptimality v.s. running time
│ │ ├── MNIST_adversary.m # MNIST dataset, adversarial online setting
│ │ ├── MNIST_stochastic_regret.m # MNIST dataset, stochastic online setting, report regret v.s. #rounds
│ │ └── MNIST_stochastic_time.m # MNIST dataset, stochastic optimization setting, report suboptimality v.s. running time
│ └── NN
│ ├── CIFAR10_NN.m # CIFAR-10 dataset, stochastic optimization setting, report suboptimality v.s. running time
│ └── MNIST_NN.m # MNIST dataset, stochastic optimization setting, report suboptimality v.s. running time
├── Data
│ ├── CIFAR-10
│ │ └── README.md
│ ├── CIFAR10_LR_opt.mat
│ ├── CIFAR10_NN_opt.mat
│ ├── MNIST
│ │ └── README.md
│ ├── MNIST_LR_opt.mat
│ └── MNIST_NN_opt.mat
├── README.md
├── Utils
│ ├── LoadCifar10.m
│ └── LoadMNIST.m
├── main_LR.m
└── main_NN.m