Skip to content
/ PPDRD Public

Collect public plant disease recognition datasets

Notifications You must be signed in to change notification settings

xml94/PPDRD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PPDRD

New contribution is encouraged and appreciated.

Collect public plant disease recognition datasets.

This project aims to only collect the public dataset to recognize plant disease because the community can not verify the performance on the private ones, although they have information and contributions.

  • For every dataset, a file is linked to give more description.
  • Dataset name: we will give a name if a dataset has no name. Default is fully public and PartPublic means partially public.
  • Crop: show the crop if only one or give the number of crops, otherwise.
  • Number of classes: include diseased classes and healthy if having.
  • Number of images: Only those images with public labels are counted, and only the original images are counted (augmented images are not).
  • Image background: complex (cmpx), medium (med), simple (simp).
  • Machine learning (ML) task: image classification (clf), object detection (obj), segmentation (seg).
  • Performance (PE): official leaderboard for challenges, or reported results in the dataset publication.
  • Reference: default is with publications or official challenges such as in kaggle; otherwise no reference .
Dataset name Crop Class Image Image BG ML task & PE
Apple2020 Apple 4 1,821 med clf: 0.984 AUROC
Apple2021 Apple 6 18,632 med clf: 0.883 F1
PCApple2023 Apple 9 10,212 med+sim clf: N.A
ASDID Soybean 8 9,648 med+sim clf: 0.968 Acc
BRACOL Coffee 5 1,747 sim clf: 0.956 Acc
RoCoLe Coffee 6 1,560 med clf: N.A
iCassava Cassava 5 5,656 med clf: 0.939 Acc
CLDCMakerere Cassava 5 21,397 cmpx+med clf: 0.913 Acc
CLDCAmanda Cassava 6 2,249 med clf: 0.930 Acc
CLDD Cassava 3 228 med clf: N.A
CDRD Cucumber 8 1,289 med+sim clf: N.A
CucumberNegm Cucumber 2 691 med clf: N.A
PaddyDoctor Rice 10 10,407 cmpx clf: 0.990 Acc
Rice1426 Rice 9 1,426 cmpx+med+sim clf: 0.971 Acc
Rice5932 Rice 4 5,932 med clf: 0.984 Acc
HuyDoRice Rice 4 3,355 sim clf: 0.984 Acc
DhanShomadhan Rice 5 1,106 cmpx+sim clf: N.A
WheatLong Wheat 5 999 cmpx clf: 0.971 Acc
WheatLeafDataset Wheat 3 407 med+sim clf: N.A
GroundNutLeaf Groundnut 5 3,058 med clf: N.A
MaizeCraze Corn 6 2,355 sim clf: N.A
BisqueCorn Corn 2 1,785 cmpx clf: N.A
CornNLB Corn 1 18,222 cmpx clf: N.A
iBean Bean 3 1,296 med clf: N.A
SoybeanMignoni Soybean 3 6,410 cmpx clf: N.A
TaiwanTomato Tomato 6 622 med+sim clf: N.A
GLFD Guava 5 527 sim clf: N.A
IDADP Grape 7 3,596 cmpx clf: N.A
CitrusRauf Citrus 10 759 sim clf: N.A
PlantVillage 14 38 54,305 sim clf: N.A
FieldPV 14 38 665 med+sim clf: 0.720 Acc
PlantDocCls 13 27 2,598 cmpx+med+sim clf: N.A
PlantConservation 12 10 4,503 sim clf: N.A
CCMT 4 22 24,881 med+sim clf: N.A
PDD271 N.A 271 2,710 cmpx+med clf: 0.855 Acc
PlantDocObj 13 27 2,598 cmpx+med+sim obj: N.A
NZDLPlantDiseaseV1 5 20 3,337 med obj: 0.745 mAP
NZDLPlantDiseaseV2 8 28 3,039 med obj: 0.932 mAP
FieldPlant 4 31 5,156 cmpx+med obj: 0.144 mAP
GrapevineDiseaseMalo Grape 3 744 cmpx obj: N.A
GrapevineDiseaseMalo Grape 4 128 cmpx seg: N.A
RoCoLe Coffee 2 1,560 sim seg: N.A
ATLDSD Apple 5 1,641 med+sim seg: N.A

Reference

Please consider cite our related papers if you think this project is useful.

@article{xu2023plant,
  title={Plant Disease Recognition Datasets in the Age of Deep Learning: Challenges and Opportunities},
  author={Xu, Mingle and Park, Ji Eun and Lee, Jaehwan and Yang, Jucheng and Yoon, Sook},
  journal={arXiv preprint arXiv:2312.07905},
  year={2023}
}
@article{meng2023known,
  title={Known and unknown class recognition on plant species and diseases},
  author={Meng, Yao and Xu, Mingle and Kim, Hyongsuk and Yoon, Sook and Jeong, Yongchae and Park, Dong Sun},
  journal={Computers and Electronics in Agriculture},
  volume={215},
  pages={108408},
  year={2023},
  publisher={Elsevier}
}
@article{xu2023embracing,
  title={Embracing limited and imperfect training datasets: opportunities and challenges in plant disease recognition using deep learning},
  author={Xu, Mingle and Kim, Hyongsuk and Yang, Jucheng and Fuentes, Alvaro and Meng, Yao and Yoon, Sook and Kim, Taehyun and Park, Dong Sun},
  journal={Frontiers in Plant Science},
  volume={14},
  year={2023},
  publisher={Frontiers Media SA}
}
@article{xu2022transfer,
  title={Transfer learning for versatile plant disease recognition with limited data},
  author={Xu, Mingle and Yoon, Sook and Jeong, Yongchae and Park, Dong Sun},
  journal={Frontiers in Plant Science},
  volume={13},
  pages={1010981},
  year={2022},
  publisher={Frontiers}
}

About

Collect public plant disease recognition datasets

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published