Skip to content

Commit

Permalink
simpler thresholds, and 'well' calibrated on the example of the doc
Browse files Browse the repository at this point in the history
  • Loading branch information
richardalligier committed Aug 2, 2024
1 parent 10a0367 commit df0dfc4
Showing 1 changed file with 64 additions and 81 deletions.
145 changes: 64 additions & 81 deletions src/traffic/algorithms/filters/consistency.py
Original file line number Diff line number Diff line change
Expand Up @@ -215,6 +215,19 @@ def consistency_solver(
return mask


def check_solution(dd, mask):
iold = None
for i, maski in enumerate(mask):
if not maski:
if iold is not None:
assert dd[i - iold, iold]
iold = i


def meanangle(a1: npt.NDArray[Any], a2: npt.NDArray[Any]) -> npt.NDArray[Any]:
return diffangle(a1, a2) * 0.5 + a2


class FilterConsistency(FilterBase):
"""
Filters noisy values, keeping only values consistent with each other.
Expand All @@ -223,28 +236,14 @@ class FilterConsistency(FilterBase):
:math:`i` and :math:`j` are consistent, an edge :math:`(i,j)` is added to
the graph. The kept values is the longest path in this graph, resulting in a
sequence of consistent values. The consistencies checked vertically between
:math:`t_i<t_j` are:: :math:`|(alt_j-alt_i)-(t_j-t_i)* ROCD_i| <
clip((t_j-t_i)*dalt_dt,dalt_min,dalt_max)` and
:math:`|(alt_j-alt_i)-(t_j-t_i)* ROCD_j| <
clip((t_j-t_i)*dalt_dt,dalt_min,dalt_max)` where :math:`dalt_dt`,
:math:`dalt_min` and :math:`dalt_max` are thresholds that can be specified
:math:`t_i<t_j` are:: :math:`|(alt_j-alt_i)-(t_j-t_i)* (ROCD_i+ROCD_j)*0.5| < dalt_dt_error` where :math:`dalt_dt_error` is a threshold that can be specified
by the user.
The consistencies checked horizontally between :math:`t_i<t_j` are:
:math:`|track_i-atan2(lat_j-lat_i,lon_j-lon_i)| < (t_j-t_i)*dtrack_dt` and
:math:`|track_j-atan2(lat_j-lat_i,lon_j-lon_i)| < (t_j-t_i)*dtrack_dt` and
:math:`|dist(lat_j,lat_i,lon_j,lon_i)-groundspeed_i*(t_j-t_i)| <
clip((t_j-t_i)*groundspeed_i*ddist_dt_over_gspeed,0,ddist_max)` where
:math:`dtrack_dt`, :math:`ddist_dt_over_gspeed` and :math:`ddist_max`
are thresholds that can be specified by the user.
If :math:`horiz_and_verti_together=False` then two graphs are built, one
for the vertical variables and one for horizontal variables. Otherwise, only
one graph is built. Using two graphs is more precise but slower. In order
to compute the longest path faster, a greedy algorithm is used. However, if
the ratio of kept points is inferior to :math:`exact_when_kept_below`
then an exact and slower computation is triggered. This computation uses the
Network library or the faster graph-tool library if available.
:math:`|(track_i+track_j)*0.5-atan2(lat_j-lat_i,lon_j-lon_i)| < (t_j-t_i)*dtrack_dt_error` and
:math:`|dist(lat_j,lat_i,lon_j,lon_i)-(groundspeed_i+groundspeed_j)*0.5*(t_j-t_i)| < dist(lat_j,lat_i,lon_j,lon_i) * relative_error_on_dist` where :math:`dtrack_dt_error` and :math:`relative_error_on_dist` are thresholds that can be specified by the user.
In order to compute the longest path faster, a greedy algorithm is used. However, if the ratio of kept points is inferior to :math:`exact_when_kept_below` then an exact and slower computation is triggered. This computation uses the Network library or the faster graph-tool library if available.
This filter replaces unacceptable values with NaNs. Then, a strategy may be
applied to fill the NaN values, by default a forward/backward fill. Other
Expand All @@ -254,95 +253,79 @@ class FilterConsistency(FilterBase):
"""

default: ClassVar[dict[str, float | tuple[float, ...]]] = dict(
dtrack_dt=2, # [degree/s]
dalt_dt=200, # [feet/min]
dalt_min=50, # [feet]
dalt_max=4000, # [feet]
ddist_dt_over_gspeed=0.2, # [-]
ddist_max=3, # [NM]
dtrack_dt_error=0.3, # [degree/s]
dalt_dt_error=100, # [feet/min]
relative_error_on_dist=2 / 100, # [-]
)

def __init__(
self,
horizon: int | None = 200,
horiz_and_verti_together: bool = False,
exact_when_kept_below: float = 0.5,
exact_when_kept_below: float = 0.8,
**kwargs: float | tuple[float, ...],
) -> None:
self.horiz_and_verti_together = horiz_and_verti_together
self.horizon = horizon
self.thresholds = {**self.default, **kwargs}
self.exact_when_kept_below = exact_when_kept_below

def apply(self, data: pd.DataFrame) -> pd.DataFrame:
lat = data.latitude.values
lon = data.longitude.values
alt = data.altitude.values
rocd = data.vertical_rate.values
gspeed = data.groundspeed.values
lat = data.latitude.values.astype(np.float64)
lon = data.longitude.values.astype(np.float64)
alt = data.altitude.values.astype(np.float64)
rocd = data.vertical_rate.values.astype(np.float64)
gspeed = data.groundspeed.values.astype(np.float64)
t = (
(data.timestamp - data.timestamp.iloc[0])
/ pd.to_timedelta(1, unit="s")
).values
).values.astype(np.float64)
assert t.min() >= 0
n = lat.shape[0]
horizon = n if self.horizon is None else min(self.horizon, n)

def lagh(v: npt.NDArray[np.float64]) -> npt.NDArray[np.float64]:
return lag(horizon, v)

dt = abs(lagh(t) - t) / 3600
dt = (lag(horizon, t) - t) / 3600.0
assert np.nanmin(dt) >= 0.0
lat_rad = np.radians(lat)
lon_rad = np.radians(lon)
lag_lat_rad = lagh(lat_rad)
# mask_nan = np.isnan(lag_lat_rad)
lag_lat_rad = lag(horizon, lat_rad)
lag_lon_rad = lag(horizon, lon_rad)
dlat = lag_lat_rad - lat_rad
dlon = lagh(lon_rad) - lon_rad
dlon = lag(horizon, lon_rad) - lon_rad
dx, dy = dxdy_from_dlat_dlon(lat_rad, lon_rad, dlat, dlon)
track_rad = np.radians(data.track.values)
lag_track_rad = lagh(track_rad)
lag_track_rad = lag(horizon, track_rad)
mytrack_rad = np.arctan2(-dx, -dy) + np.pi
thresh_track = np.radians(self.thresholds["dtrack_dt"]) * 3600 * dt
ddtrack_fwd = np.abs(diffangle(mytrack_rad, track_rad)) < thresh_track
ddtrack_bwd = (
np.abs(diffangle(mytrack_rad, lag_track_rad)) < thresh_track
# mytrack_rad[np.logical_and(dx==0,dy==0)]=np.nan
thresh_track = np.radians(self.thresholds["dtrack_dt_error"]) * (
3600 * dt
)
ddtrack = np.logical_and(ddtrack_fwd, ddtrack_bwd)
dist = distance(lag_lat_rad, lagh(lon_rad), lat_rad, lon_rad)
absdist = abs(dist)
gdist_matrix = gspeed * dt
ddspeed = np.abs(gdist_matrix - absdist) < np.clip(
self.thresholds["ddist_dt_over_gspeed"] * gspeed * dt,
0,
self.thresholds["ddist_max"],
ddtrack = (
np.abs(diffangle(mytrack_rad, meanangle(track_rad, lag_track_rad)))
<= thresh_track
)
ddhorizontal = np.logical_and(ddtrack, ddspeed)

dalt = lagh(alt) - alt
thresh_alt = np.clip(
self.thresholds["dalt_dt"] * 60 * dt,
self.thresholds["dalt_min"],
self.thresholds["dalt_max"],
dist = distance(lag_lat_rad, lag_lon_rad, lat_rad, lon_rad)
lag_gspeed = lag(horizon, gspeed)
computed_dist = (lag_gspeed + gspeed) * 0.5 * dt
ddspeed = (
np.abs(computed_dist - dist)
<= self.thresholds["relative_error_on_dist"] * dist
)
ddvertical = np.logical_and(
np.abs(dalt - rocd * dt * 60) < thresh_alt,
np.abs(dalt - lagh(rocd) * dt * 60) < thresh_alt,

dalt = lag(horizon, alt) - alt
dt_min = 60 * dt
thresh_alt = self.thresholds["dalt_dt_error"] * dt_min
ddvertical = (
np.abs(dalt - (rocd + lag(horizon, rocd)) * 0.5 * dt_min)
<= thresh_alt
)
if self.horiz_and_verti_together:
mask_horiz = consistency_solver(
np.logical_and(ddhorizontal, ddvertical),
self.exact_when_kept_below,
)
mask_verti = mask_horiz
else:
mask_horiz = consistency_solver(
ddhorizontal, self.exact_when_kept_below
)
mask_verti = consistency_solver(
ddvertical, self.exact_when_kept_below
)
data.loc[
mask_horiz, ["track", "longitude", "latitude", "groundspeed"]
] = np.nan

mask_speed = consistency_solver(ddspeed, self.exact_when_kept_below)
mask_track = consistency_solver(ddtrack, self.exact_when_kept_below)
mask_verti = consistency_solver(ddvertical, self.exact_when_kept_below)
# check_solution(ddspeed,mask_speed)
# check_solution(ddtrack,mask_track)
# check_solution(ddvertical,mask_verti)
mask_lat_lon = np.logical_or(mask_speed, mask_track)
data.loc[mask_lat_lon, ["longitude", "latitude"]] = np.nan
data.loc[mask_speed, ["groundspeed"]] = np.nan
data.loc[mask_track, ["track"]] = np.nan
data.loc[mask_verti, ["altitude", "vertical_rate"]] = np.nan
return data

0 comments on commit df0dfc4

Please sign in to comment.