✅ Module 1: Brain tumor segmentation using U-NET architecture and Sorensen Dice Index metric. Trained on 3D NIfTI data.
✅ Module 2: Multimodal Transfer Learning Approach for Alzheimer’s Disease Stage Classification Using 3D Convolutional Neural Networks. Trained on ADNI data.
- Implemented 3D-CNNs:
- SEResNeXt101
(0.9879 Val AUC)
- ResNet18
(0.9982 Val AUC)
- VGG-16
(0.9989 Val AUC)
- DenseNet121
(0.9902 Val AUC)
- SEResNeXt101
- Built a multimodal approach. Modalities of the patient used are:
- Gender
- Age
- Frequency of Visit
- Patient ID
- Implemented:
- ViT-B_32 with imagenet21k weights
(0.86 Val AUC)
- ViT-B_32 with imagenet21k weights
Package | Tested version |
---|---|
tensorflow | 2.11.0 |
keras | 2.10.0 |
opencv_python | 4.7.0.68 |
nibabel | 5.0.1 |
numpy | 1.23.3 |
pandas | 1.5.0 |
matplotlib | 3.6.0 |
scikit_learn | 1.2.2 |
SimpleITK | 2.2.1 |
ipython | 8.11.0 |