Skip to content

Brain tumor sementation using U-NET architecture and Sorensen Dice Index metric.

Notifications You must be signed in to change notification settings

yaashwardhan/BrainStain.ai

Repository files navigation

BrainStain.ai 🧠

MIT License GitHub last commit (branch)

Module 1: Brain tumor segmentation using U-NET architecture and Sorensen Dice Index metric. Trained on 3D NIfTI data.

Module 2: Multimodal Transfer Learning Approach for Alzheimer’s Disease Stage Classification Using 3D Convolutional Neural Networks. Trained on ADNI data.

For 3D NifTi data:

  • Implemented 3D-CNNs:
    • SEResNeXt101 (0.9879 Val AUC)
    • ResNet18 (0.9982 Val AUC)
    • VGG-16 (0.9989 Val AUC)
    • DenseNet121 (0.9902 Val AUC)
  • Built a multimodal approach. Modalities of the patient used are:
    • Gender
    • Age
    • Frequency of Visit
    • Patient ID

For 2D data: The 2D data was created by taking the middle slice of the 3D NifTi data.

  • Implemented:
    • ViT-B_32 with imagenet21k weights (0.86 Val AUC)

Dependencies (Module 1)

Package Tested version
tensorflow 2.11.0
keras 2.10.0
opencv_python 4.7.0.68
nibabel 5.0.1
numpy 1.23.3
pandas 1.5.0
matplotlib 3.6.0
scikit_learn 1.2.2
SimpleITK 2.2.1
ipython 8.11.0

About

Brain tumor sementation using U-NET architecture and Sorensen Dice Index metric.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published