Skip to content

yanyi74/AutoRE

 
 

Repository files navigation

Read this in English.

AutoRE

本仓库基于LLaMA-Factory代码,实现了基于大语言模型的文档级关系抽取系统AutoRE。使用的抽取范式为RHF(论文链接)。 目前基于Re-DocRED数据集进行实验,能够抽取文档级文本中的96个关系的三元组事实。

使用方法

下载模型地址ckpt,其中对应着微调Mistral-7B,Vicuna-7B和ChatGLM3-6B后的AutoRE模型。

0.环境准备

    cd AutoRE/
    pip install -r requirement.txt

因为使用了wandb,所以需要先将train_bash.py中的key进行设置

api_key = os.environ.get('WANDB_API_KEY', "your api key")

1.推理

# 根据AutoRE.sh内的提示进行修改
bash AutoRE.sh
# 输入对应文档即可自动抽取

2.模型训练

1)数据准备

cd AutoRE/utils/
python pre_process_data.py

2)微调模型

我们的代码参考自LLaMA-Factory,并进行了适当修改。

cd AutoRE/
# 选择对应的模型进行微调
# 可以指定单卡或者多卡
bash train_script/mistral_loras_D_R_H_F_desc.sh

3.模型测试

cd AutoRE/
# 选择对应的模型进行测试,数据集为Re-DocRED,将--inference去除,并且设置具体的模型和ckpt
bash AutoRE.sh

AutoRE_analysis

验证analysis过程是否对抽取是有帮助的。整个过程思路与AutoRE的框架一致,只是在每一步抽取前加入了analysis。 具体可以看redocred_train_analysis.json中的例子。 数据和代码已经分享,希望对大家能有些许启发~

引用

如果你觉得我们的工作有帮助的话,请考虑引用论文。

@article{lilong2024autore,
  title={AutoRE: Document-Level Relation Extraction with Large Language Models},
  author={Lilong, Xue and Dan, Zhang and Yuxiao, Dong and Jie, Tang},
  journal={arXiv preprint arXiv:2403.14888},
  year={2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 93.0%
  • Shell 7.0%