The offical PyTorch implementation of "VF-HM: Vision Loss Estimation using Fundus Photograph for High Myopia" in MICCAI, 2023.
First, prepare your dataset as:
.
└── data.csv # data file list
├── fundus # fundus dir
│ ├── aaa.tif # fundus image
│ └── bbb.tif # fundus image
└── vf # vf dir
├── aaa.json # vf file
└── bbb.json # vf file
data.csv
contains the diagnosis information for each eye, including the fundus file name and corresponding vf file name, eye_type: Left (L) or Right(R); in addition, there is one MM category (C0/C1/C2/C3/C4) for training data only.
fundus_id | vf_id | mm | eye_type |
---|---|---|---|
aaa.tif | aaa.json | C0 | L |
bbb.tif | bbb.json | C1 | L |
... | ... | . | . |
fundus
dir contains fundus images in tif format with RGB colorful mode. An example of fundus (Left eye) is shown as follows (From Wikipedia):
vf
dir contains the vf map in JSON format with 52 effective points. An example of VF (Left eye) is shown as follows:
[[nan nan nan nan nan nan nan nan nan nan]
[nan nan nan 24. 26. 24. 21. nan nan nan]
[nan nan 27. 26. 24. 25. 25. 25. nan nan]
[nan 26. 24. 26. 27. 26. 26. 27. 23. nan]
[nan 18. nan 25. 29. 29. 29. 28. 26. 23.]
[nan 0. nan 26. 30. 30. 29. 28. 27. 20.]
[nan 24. 27. 27. 29. 29. 25. 28. 24. nan]
[nan nan 27. 29. 29. 29. 28. 29. nan nan]
[nan nan nan 31. 26. 27. 27. nan nan nan]
[nan nan nan nan nan nan nan nan nan nan]]
run regression baseline:
bash train_reg.sh > train_reg.out &
run VF-HM:
bash train_vfhm.sh > train_vfhm.out &
If you use our method or our code in your research, please kindly cite it:
@inproceedings{yan2023vfhm,
title={{VF-HM}: Vision loss estimation using fundus photograph for high myopia},
author={Yan, Zipei and Liang, Dong and Xu, Linchuan and Li, Jiahang and Liu, Zhengji and Wang, Shuai and Cao, Jiannong and Kee, Chea-su},
booktitle={MICCAI},
year={2023},
}