-
Notifications
You must be signed in to change notification settings - Fork 236
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
341 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
import os | ||
import numpy as np | ||
import pandas as pd | ||
|
||
import tensorflow as tf | ||
from tensorflow.keras.layers import Input, Dense, Dropout, Flatten, Embedding, multiply | ||
from tensorflow.keras import Model | ||
|
||
from tensorflow.keras.optimizers import Adam | ||
|
||
class CGAN(): | ||
|
||
def __init__(self, gan_args): | ||
[self.batch_size, lr, self.noise_dim, | ||
self.data_dim, num_classes, self.classes, layers_dim] = gan_args | ||
|
||
|
||
self.generator = Generator(self.batch_size, num_classes). \ | ||
build_model(input_shape=(self.noise_dim,), dim=layers_dim, data_dim=self.data_dim) | ||
|
||
self.discriminator = Discriminator(self.batch_size, num_classes). \ | ||
build_model(input_shape=(self.data_dim,), dim=layers_dim) | ||
|
||
optimizer = Adam(lr, 0.5) | ||
|
||
# Build and compile the discriminator | ||
self.discriminator.compile(loss='binary_crossentropy', | ||
optimizer=optimizer, | ||
metrics=['accuracy']) | ||
|
||
# The generator takes noise as input and generates imgs | ||
z = Input(shape=(self.noise_dim,), batch_size=self.batch_size) | ||
label = Input(shape=(1,), batch_size=self.batch_size) | ||
record = self.generator([z, label]) | ||
|
||
# For the combined model we will only train the generator | ||
self.discriminator.trainable = False | ||
|
||
# The discriminator takes generated images as input and determines validity | ||
validity = self.discriminator([record, label]) | ||
|
||
# The combined model (stacked generator and discriminator) | ||
# Trains the generator to fool the discriminator | ||
self.combined = Model([z, label], validity) | ||
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer) | ||
|
||
def get_data_batch(self, train, batch_size, seed=0): | ||
# # random sampling - some samples will have excessively low or high sampling, but easy to implement | ||
# np.random.seed(seed) | ||
# x = train.loc[ np.random.choice(train.index, batch_size) ].values | ||
# iterate through shuffled indices, so every sample gets covered evenly | ||
|
||
start_i = (batch_size * seed) % len(train) | ||
stop_i = start_i + batch_size | ||
shuffle_seed = (batch_size * seed) // len(train) | ||
np.random.seed(shuffle_seed) | ||
train_ix = np.random.choice(list(train.index), replace=False, size=len(train)) # wasteful to shuffle every time | ||
train_ix = list(train_ix) + list(train_ix) # duplicate to cover ranges past the end of the set | ||
x = train.loc[train_ix[start_i: stop_i]].values | ||
return np.reshape(x, (batch_size, -1)) | ||
|
||
def train(self, data, train_arguments): | ||
[cache_prefix, label_dim, epochs, sample_interval, data_dir] = train_arguments | ||
|
||
data_cols = data.columns | ||
|
||
# Adversarial ground truths | ||
valid = np.ones((self.batch_size, 1)) | ||
fake = np.zeros((self.batch_size, 1)) | ||
|
||
for epoch in range(epochs): | ||
# --------------------- | ||
# Train Discriminator | ||
# --------------------- | ||
batch_x = self.get_data_batch(data, self.batch_size) | ||
label = batch_x[:, label_dim] | ||
noise = tf.random.normal((self.batch_size, self.noise_dim)) | ||
|
||
# Generate a batch of new records | ||
gen_records = self.generator.predict([noise, label]) | ||
|
||
# Train the discriminator | ||
d_loss_real = self.discriminator.train_on_batch([batch_x, label], valid) | ||
d_loss_fake = self.discriminator.train_on_batch([gen_records, label], fake) | ||
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) | ||
|
||
# --------------------- | ||
# Train Generator | ||
# --------------------- | ||
noise = tf.random.normal((self.batch_size, self.noise_dim)) | ||
# Train the generator (to have the discriminator label samples as valid) | ||
g_loss = self.combined.train_on_batch([noise, label], valid) | ||
|
||
# Plot the progress | ||
print("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100 * d_loss[1], g_loss)) | ||
|
||
# If at save interval => save generated image samples | ||
if epoch % sample_interval == 0: | ||
# Test here data generation step | ||
# save model checkpoints | ||
model_checkpoint_base_name = data_dir + cache_prefix + '_{}_model_weights_step_{}.h5' | ||
self.generator.save_weights(model_checkpoint_base_name.format('generator', epoch)) | ||
self.discriminator.save_weights(model_checkpoint_base_name.format('discriminator', epoch)) | ||
|
||
z = tf.random.normal((432, self.noise_dim)) | ||
label_z = tf.random.uniform((432,), minval=min(self.classes), maxval=max(self.classes)+1, dtype=tf.dtypes.int32) | ||
gen_data = self.generator([z, label_z]) | ||
print('generated_data') | ||
|
||
def save(self, path, name): | ||
assert os.path.isdir(path) == True, \ | ||
"Please provide a valid path. Path must be a directory." | ||
model_path = os.path.join(path, name) | ||
self.generator.save_weights(model_path) # Load the generator | ||
return | ||
|
||
def load(self): | ||
return | ||
|
||
|
||
class Generator(): | ||
def __init__(self, batch_size, num_classes): | ||
self.batch_size = batch_size | ||
self.num_classes = num_classes | ||
|
||
def build_model(self, input_shape, dim, data_dim): | ||
noise = Input(shape=input_shape, batch_size=self.batch_size) | ||
label = Input(shape=(1,), batch_size=self.batch_size, dtype='int32') | ||
label_embedding = Flatten()(Embedding(self.num_classes, 1)(label)) | ||
input = multiply([noise, label_embedding]) | ||
|
||
x = Dense(dim, activation='relu')(input) | ||
x = Dense(dim * 2, activation='relu')(x) | ||
x = Dense(dim * 4, activation='relu')(x) | ||
x = Dense(data_dim)(x) | ||
|
||
return Model(inputs=[noise, label], outputs=x) | ||
|
||
|
||
class Discriminator(): | ||
def __init__(self, batch_size, num_classes): | ||
self.batch_size = batch_size | ||
self.num_classes = num_classes | ||
|
||
def build_model(self, input_shape, dim): | ||
events = Input(shape=input_shape, batch_size=self.batch_size) | ||
label = Input(shape=(1,), batch_size=self.batch_size, dtype='int32') | ||
|
||
label_embedding = Flatten()(Embedding(self.num_classes, 1)(label)) | ||
events_flat = Flatten()(events) | ||
input = multiply([events_flat, label_embedding]) | ||
|
||
x = Dense(dim * 4, activation='relu')(input) | ||
x = Dropout(0.1)(x) | ||
x = Dense(dim * 2, activation='relu')(x) | ||
x = Dropout(0.1)(x) | ||
x = Dense(dim, activation='relu')(x) | ||
x = Dense(1, activation='sigmoid')(x) | ||
|
||
return Model(inputs=[events, label], outputs=x) | ||
|
||
|
||
if __name__ == '__main__': | ||
data = pd.read_csv('../../data/data_processed.csv', index_col=[0]) | ||
y = data['Class'] | ||
|
||
gan_args = [128, 0.00002, 32, data.shape[1], len(y.unique()), y.unique(), 128] | ||
train_args = ['', 30,300, 50, '.'] | ||
|
||
GAN_synth = CGAN(gan_args) | ||
GAN_synth.train(data, train_args) | ||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
import os | ||
import numpy as np | ||
import pandas as pd | ||
|
||
import tensorflow as tf | ||
from tensorflow.keras.layers import Input, Dense, Dropout | ||
from tensorflow.keras import Model | ||
|
||
from tensorflow.keras.optimizers import Adam | ||
from tensorflow.keras.utils import plot_model | ||
|
||
|
||
class GAN(): | ||
|
||
def __init__(self, gan_args): | ||
[self.batch_size, lr, self.noise_dim, | ||
self.data_dim, layers_dim] = gan_args | ||
|
||
self.generator = Generator(self.batch_size).\ | ||
build_model(input_shape=(self.noise_dim,), dim=layers_dim, data_dim=self.data_dim) | ||
|
||
self.discriminator = Discriminator(self.batch_size).\ | ||
build_model(input_shape=(self.data_dim,), dim=layers_dim) | ||
|
||
optimizer = Adam(lr, 0.5) | ||
|
||
# Build and compile the discriminator | ||
self.discriminator.compile(loss='binary_crossentropy', | ||
optimizer=optimizer, | ||
metrics=['accuracy']) | ||
|
||
# The generator takes noise as input and generates imgs | ||
z = Input(shape=(self.noise_dim,)) | ||
record = self.generator(z) | ||
|
||
# For the combined model we will only train the generator | ||
self.discriminator.trainable = False | ||
|
||
# The discriminator takes generated images as input and determines validity | ||
validity = self.discriminator(record) | ||
|
||
# The combined model (stacked generator and discriminator) | ||
# Trains the generator to fool the discriminator | ||
self.combined = Model(z, validity) | ||
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer) | ||
|
||
def get_data_batch(self, train, batch_size, seed=0): | ||
# # random sampling - some samples will have excessively low or high sampling, but easy to implement | ||
# np.random.seed(seed) | ||
# x = train.loc[ np.random.choice(train.index, batch_size) ].values | ||
# iterate through shuffled indices, so every sample gets covered evenly | ||
|
||
start_i = (batch_size * seed) % len(train) | ||
stop_i = start_i + batch_size | ||
shuffle_seed = (batch_size * seed) // len(train) | ||
np.random.seed(shuffle_seed) | ||
train_ix = np.random.choice(list(train.index), replace=False, size=len(train)) # wasteful to shuffle every time | ||
train_ix = list(train_ix) + list(train_ix) # duplicate to cover ranges past the end of the set | ||
x = train.loc[train_ix[start_i: stop_i]].values | ||
return np.reshape(x, (batch_size, -1)) | ||
|
||
def train(self, data, train_arguments): | ||
[cache_prefix, epochs, sample_interval, data_dir] = train_arguments | ||
|
||
data_cols = data.columns | ||
|
||
# Adversarial ground truths | ||
valid = np.ones((self.batch_size, 1)) | ||
fake = np.zeros((self.batch_size, 1)) | ||
|
||
for epoch in range(epochs): | ||
# --------------------- | ||
# Train Discriminator | ||
# --------------------- | ||
batch_data = self.get_data_batch(data, self.batch_size) | ||
noise = tf.random.normal((self.batch_size, self.noise_dim)) | ||
|
||
# Generate a batch of new images | ||
gen_imgs = self.generator.predict(noise) | ||
|
||
# Train the discriminator | ||
d_loss_real = self.discriminator.train_on_batch(batch_data, valid) | ||
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake) | ||
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) | ||
|
||
# --------------------- | ||
# Train Generator | ||
# --------------------- | ||
noise = tf.random.normal((self.batch_size, self.noise_dim)) | ||
# Train the generator (to have the discriminator label samples as valid) | ||
g_loss = self.combined.train_on_batch(noise, valid) | ||
|
||
# Plot the progress | ||
print("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100 * d_loss[1], g_loss)) | ||
|
||
# If at save interval => save generated image samples | ||
if epoch % sample_interval == 0: | ||
#Test here data generation step | ||
# save model checkpoints | ||
model_checkpoint_base_name = data_dir + cache_prefix + '_{}_model_weights_step_{}.h5' | ||
self.generator.save_weights(model_checkpoint_base_name.format('generator', epoch)) | ||
self.discriminator.save_weights(model_checkpoint_base_name.format('discriminator', epoch)) | ||
|
||
#Aqui tentar gerar os dados? | ||
z = tf.random.normal((432, self.noise_dim)) | ||
gen_data = self.generator(z) | ||
print('generated_data') | ||
|
||
def save(self, path, name): | ||
assert os.path.isdir(path)==True, \ | ||
"Please provide a valid path. Path must be a directory." | ||
model_path = os.path.join(path, name) | ||
self.generator.save_weights(model_path) #Load the generator | ||
return | ||
|
||
def load(self): | ||
return | ||
|
||
class Generator(): | ||
def __init__(self, batch_size): | ||
self.batch_size=batch_size | ||
|
||
def build_model(self, input_shape, dim, data_dim): | ||
input= Input(shape=input_shape, batch_size=self.batch_size) | ||
x = Dense(dim, activation='relu')(input) | ||
x = Dense(dim * 2, activation='relu')(x) | ||
x = Dense(dim * 4, activation='relu')(x) | ||
x = Dense(data_dim)(x) | ||
return Model(inputs=input, outputs=x) | ||
|
||
class Discriminator(): | ||
def __init__(self,batch_size): | ||
self.batch_size=batch_size | ||
|
||
def build_model(self, input_shape, dim): | ||
input = Input(shape=input_shape, batch_size=self.batch_size) | ||
x = Dense(dim * 4, activation='relu')(input) | ||
x = Dropout(0.1)(x) | ||
x = Dense(dim * 2, activation='relu')(x) | ||
x = Dropout(0.1)(x) | ||
x = Dense(dim, activation='relu')(x) | ||
x = Dense(1, activation='sigmoid')(x) | ||
return Model(inputs=input, outputs=x) | ||
|
||
if __name__ == '__main__': | ||
|
||
data = pd.read_csv('../../data/data_processed.csv', index_col=[0]) | ||
filt_data = data[data['Class'] == 1] | ||
gan_args = [128, 0.00002, 32, filt_data.shape[1], 128] | ||
train_args = ['', 300, 50, '.'] | ||
|
||
GAN_synth = GAN(gan_args) | ||
GAN_synth.train(filt_data, train_args) | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
pandas==1.0.3 | ||
numpy==1.17.4 | ||
|
||
tensorflow==2.1.0 |