Skip to content

Code and Dataset for our CVPR 2022 paper "Video Shadow Detection via Spatio-Temporal Interpolation Consistency Training"

Notifications You must be signed in to change notification settings

yihong-97/STICT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 

Repository files navigation

STICT for Video Shadow Detection

Code and Dataset for our CVPR 2022 paper "Video Shadow Detection via Spatio-Temporal Interpolation Consistency Training"

VIdeo ShAdow Detection dataset (VISAD)

VISAD is consisted of 82 videos and was divided into two parts according to semantic of scenes: the Driving Scenes (VISAD-DS) part and the Moving Object Scenes (VISAD-MOS) part, denoted as DS and MOS respectively.

It is available at Google Drive.

scenes videos/annotated frames/annotated resolution
DS-all 47 / 17 7953 / 2881 1280×720
DS-test 13 / 13 2190 / 2190 1280×720
MOS-all 34 / 16 4613 / 1307 (530-1920)×(360-1080)
MOS-test 13 / 13 873 / 873 1920×1080,1600×900

evaluation over predictions

Run python evaluate.py

important arguments:
-gp, --gt_path ground truth path
-pp, --pred_path your predicitons path

Our pretrained shadow maps is available here(DS, MOS, ViSha)

Spatio-Temporal Interpolation Consistency Training

Requirement

  • cuda (10.0)
  • Python (3.6)
  • PyTorch (1.1.0)
  • spatial-correlation-sampler (0.0.8)
  • Flownet (2.0)

Download dataset

Download the following datasets and unzip them into ./data folder

  • SBU (it can refer MTMT)
  • DS
  • MOS

Testing

Our pretrained model is available here

  1. Run python test.py
important arguments:
--trained_model trained model path (default:'./DS')
--dataset_path your test set path (default: './data/DS/test/')
--dataset_txt_path your test set list path (default: './data/DS/test/test.txt')

Training

  1. Download pretrained models (ResNet and FlowNet) into ./pretrained_model folder
  2. Run python train.py
important arguments:
--target_domain (options: 'DS_U', 'MOS_U', 'ViSha') (default: 'DS_U')
--dataset_U_path your video domain dataset path (default: './data/DS/train/')

About

Code and Dataset for our CVPR 2022 paper "Video Shadow Detection via Spatio-Temporal Interpolation Consistency Training"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published