forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Relay][Pass] Add ExtractOperators pass (apache#8996)
* add extractor * extract to array * add comments * lint * Update tests/python/relay/test_analysis_extract_operators.py Co-authored-by: Cody Yu <comaniac0422@gmail.com> * op freqs * add comment * Update python/tvm/relay/analysis/analysis.py Co-authored-by: Cody Yu <comaniac0422@gmail.com> * oops * mixedmode visitor * oops Co-authored-by: Cody Yu <comaniac0422@gmail.com>
- Loading branch information
Showing
3 changed files
with
199 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* \file extract_operators.cc | ||
* \brief Extract unique operators from an IRModule | ||
*/ | ||
#include <tvm/node/structural_hash.h> | ||
#include <tvm/relay/analysis.h> | ||
#include <tvm/relay/expr.h> | ||
#include <tvm/relay/expr_functor.h> | ||
|
||
namespace tvm { | ||
namespace relay { | ||
|
||
class OperatorExtractorWrapper : private MixedModeVisitor { | ||
public: | ||
explicit OperatorExtractorWrapper(const IRModule& mod) : mod_(mod) {} | ||
|
||
Map<String, tvm::Integer> Extract() { | ||
VisitExpr(this->mod_->Lookup("main")); | ||
|
||
return operator_freqs_; | ||
} | ||
|
||
private: | ||
const IRModule mod_; | ||
/*! \brief Map of operator to frequency. */ | ||
Map<String, tvm::Integer> operator_freqs_; | ||
|
||
void VisitExpr_(const CallNode* n) final { | ||
VisitExpr(n->op); | ||
|
||
auto op = n->op.as<OpNode>(); | ||
if (op) { | ||
auto it = operator_freqs_.find(op->name); | ||
ICHECK(it != operator_freqs_.end()) | ||
<< "Call's OpNode must be visited and registered before access"; | ||
operator_freqs_.Set(op->name, 1 + operator_freqs_.at(op->name)); | ||
} | ||
|
||
MixedModeVisitor::VisitExpr_(n); | ||
} | ||
|
||
void VisitExpr_(const OpNode* n) final { | ||
// NOTE: OpNode is visited only once for every operator kind | ||
// regardless of how many times that op appears in the graph. | ||
operator_freqs_.Set(n->name, 0U); | ||
} | ||
}; | ||
|
||
Map<String, tvm::Integer> ExtractOperatorsPacked(const IRModule& mod) { | ||
return OperatorExtractorWrapper(mod).Extract(); | ||
} | ||
|
||
TVM_REGISTER_GLOBAL("relay.analysis.ExtractOperators").set_body_typed(ExtractOperatorsPacked); | ||
|
||
} // namespace relay | ||
} // namespace tvm |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""Test function extraction""" | ||
import pytest | ||
import tvm | ||
from tvm import relay | ||
from tvm.relay.testing.resnet import get_workload | ||
from tvm.relay.testing import run_opt_pass | ||
|
||
|
||
def get_conv_net(): | ||
"""This gets the net for: | ||
conv2d | ||
/ | | ||
/ | | ||
conv2d | | ||
\ | | ||
\ | | ||
elemwise add | ||
| | ||
""" | ||
dshape = (1, 1, 5, 1) | ||
x = relay.var("x", shape=dshape) | ||
y = relay.nn.conv2d(x, relay.var("w1"), kernel_size=(3, 3), padding=(1, 1), channels=1) | ||
x1 = relay.nn.conv2d(y, relay.var("w2"), kernel_size=(3, 3), padding=(1, 1), channels=1) | ||
|
||
z = relay.add(y, x1) | ||
|
||
return tvm.IRModule.from_expr(z) | ||
|
||
|
||
def get_conv2d(): | ||
x = relay.var("x", shape=(1, 56, 56, 64)) | ||
weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) | ||
y = relay.nn.conv2d( | ||
x, | ||
weight1, | ||
channels=32, | ||
kernel_size=(3, 3), | ||
padding=(1, 1), | ||
data_layout="NHWC", | ||
kernel_layout="HWIO", | ||
) | ||
return tvm.IRModule.from_expr(y) | ||
|
||
|
||
def test_extract_identity(): | ||
mod = get_conv2d() | ||
op_freqs = relay.analysis.list_op_freqs(mod) | ||
assert len(op_freqs) == 1 | ||
assert op_freqs["nn.conv2d"] == 1 | ||
|
||
|
||
def test_extract_conv_net(): | ||
mod = get_conv_net() | ||
op_freqs = relay.analysis.list_op_freqs(mod) | ||
assert len(op_freqs) == 2 | ||
assert op_freqs["add"] == 1 | ||
assert op_freqs["nn.conv2d"] == 2 | ||
|
||
|
||
def test_extract_fused(): | ||
mod = get_conv_net() | ||
mod = relay.transform.InferType()(mod) | ||
mod = relay.transform.FuseOps(3)(mod) | ||
|
||
op_freqs = relay.analysis.list_op_freqs(mod) | ||
assert len(op_freqs) == 2 | ||
assert op_freqs["add"] == 1 | ||
assert op_freqs["nn.conv2d"] == 2 | ||
|
||
|
||
def test_extract_resnet(): | ||
mod, _params = get_workload() | ||
expected_op_freqs = { | ||
"nn.batch_norm": 19, | ||
"nn.conv2d": 21, | ||
"nn.relu": 18, | ||
"nn.max_pool2d": 1, | ||
"add": 8, | ||
"nn.global_avg_pool2d": 1, | ||
"nn.batch_flatten": 1, | ||
"nn.dense": 1, | ||
"nn.bias_add": 1, | ||
"nn.softmax": 1, | ||
} | ||
op_freqs = relay.analysis.list_op_freqs(mod) | ||
assert len(op_freqs) == len(expected_op_freqs) | ||
assert all([op_freqs[op] == expected_op_freqs[op] for op in expected_op_freqs]) | ||
|
||
|
||
if __name__ == "__main__": | ||
pytest.main([__file__]) |