forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add PaddlePaddle tutorial (apache#9124)
* add paddle tutorial * fix some format issues * fix code style * clean * fix format * fix title underline * PaddlePaddle>=2.1.3
- Loading branch information
Showing
2 changed files
with
118 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
""" | ||
Compile PaddlePaddle Models | ||
=========================== | ||
**Author**: `Ziyuan Ma <https://github.com/ZiyuanMa/>`_ | ||
This article is an introductory tutorial to deploy PaddlePaddle models with Relay. | ||
For us to begin with, PaddlePaddle>=2.1.3 is required to be installed. | ||
A quick solution is | ||
.. code-block:: bash | ||
pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple | ||
or please refer to official site. | ||
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html | ||
""" | ||
import tarfile | ||
import paddle | ||
import numpy as np | ||
import tvm | ||
from tvm import relay | ||
from tvm.contrib.download import download_testdata | ||
|
||
###################################################################### | ||
# Load pretrained ResNet50 model | ||
# --------------------------------------------- | ||
# We load a pretrained ResNet50 provided by PaddlePaddle. | ||
url = "https://bj.bcebos.com/x2paddle/models/paddle_resnet50.tar" | ||
model_path = download_testdata(url, "paddle_resnet50.tar", module="model") | ||
|
||
with tarfile.open(model_path) as tar: | ||
names = tar.getnames() | ||
for name in names: | ||
tar.extract(name, "./") | ||
|
||
model = paddle.jit.load("./paddle_resnet50/model") | ||
|
||
###################################################################### | ||
# Load a test image | ||
# --------------------------------------------- | ||
# A single cat dominates the examples! | ||
|
||
from PIL import Image | ||
import paddle.vision.transforms as T | ||
|
||
|
||
transforms = T.Compose( | ||
[ | ||
T.Resize((256, 256)), | ||
T.CenterCrop(224), | ||
T.ToTensor(), | ||
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | ||
] | ||
) | ||
|
||
img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" | ||
img_path = download_testdata(img_url, "cat.png", module="data") | ||
img = Image.open(img_path).resize((224, 224)) | ||
|
||
img = transforms(img) | ||
img = np.expand_dims(img, axis=0) | ||
|
||
###################################################################### | ||
# Compile the model with relay | ||
# --------------------------------------------- | ||
|
||
target = "llvm" | ||
shape_dict = {"inputs": img.shape} | ||
mod, params = relay.frontend.from_paddle(model, shape_dict) | ||
|
||
with tvm.transform.PassContext(opt_level=3): | ||
executor = relay.build_module.create_executor( | ||
"graph", mod, tvm.cpu(0), target, params | ||
).evaluate() | ||
|
||
###################################################################### | ||
# Execute on TVM | ||
# --------------------------------------------- | ||
dtype = "float32" | ||
tvm_output = executor(tvm.nd.array(img.astype(dtype))).numpy() | ||
|
||
###################################################################### | ||
# Look up synset name | ||
# --------------------------------------------- | ||
# Look up prediction top 1 index in 1000 class synset. | ||
|
||
synset_url = "".join( | ||
[ | ||
"https://gist.githubusercontent.com/zhreshold/", | ||
"4d0b62f3d01426887599d4f7ede23ee5/raw/", | ||
"596b27d23537e5a1b5751d2b0481ef172f58b539/", | ||
"imagenet1000_clsid_to_human.txt", | ||
] | ||
) | ||
synset_name = "imagenet1000_clsid_to_human.txt" | ||
synset_path = download_testdata(synset_url, synset_name, module="data") | ||
with open(synset_path) as f: | ||
synset = f.readlines() | ||
|
||
top1 = np.argmax(tvm_output[0]) | ||
print(f"TVM prediction top-1 id: {top1}, class name: {synset[top1]}") |