This is the official implementation of the LEFTNet method proposed in the following paper.
Weitao Du, Yuanqi Du, Limei Wang, Dieqiao Feng, Guifeng Wang, Shuiwang Ji, Carla Gomes, Zhi-Ming Ma. "A New Perspective on Building Efficient and Expressive 3D Equivariant Graph Neural Networks". [NeurIPS 2023]
We include key dependencies below. The versions we used are in the parentheses.
- PyTorch (1.9.0)
- PyTorch Geometric (1.7.2)
device=0
target='homo' # 'mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve','U0', 'U', 'H', 'G', 'Cv'
python main_qm9.py --device $device --target $target
device=0
name='aspirin' #aspirin, benzene2017, ethanol, malonaldehyde, naphthalene, salicylic, toluene, uracil
python main_md17.py --device $device --name $name
@article{du2024new,
title={A new perspective on building efficient and expressive 3D equivariant graph neural networks},
author={Du, Yuanqi and Wang, Limei and Feng, Dieqiao and Wang, Guifeng and Ji, Shuiwang and Gomes, Carla P and Ma, Zhi-Ming and others},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2023}
}
We acknowledge DIG library for adapting the training pipeline on QM9 and MD17.