forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
finetune MM-GDINO on ov_coco and ov_lvis (open-mmlab#11304)
- Loading branch information
Showing
4 changed files
with
547 additions
and
1 deletion.
There are no files selected for viewing
158 changes: 158 additions & 0 deletions
158
configs/mm_grounding_dino/coco/grounding_dino_swin-t_finetune_16xb4_1x_coco_48_17.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
_base_ = '../grounding_dino_swin-t_pretrain_obj365.py' | ||
|
||
data_root = 'data/coco/' | ||
base_classes = ('person', 'bicycle', 'car', 'motorcycle', 'train', 'truck', | ||
'boat', 'bench', 'bird', 'horse', 'sheep', 'bear', 'zebra', | ||
'giraffe', 'backpack', 'handbag', 'suitcase', 'frisbee', | ||
'skis', 'kite', 'surfboard', 'bottle', 'fork', 'spoon', 'bowl', | ||
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', | ||
'pizza', 'donut', 'chair', 'bed', 'toilet', 'tv', 'laptop', | ||
'mouse', 'remote', 'microwave', 'oven', 'toaster', | ||
'refrigerator', 'book', 'clock', 'vase', 'toothbrush') | ||
novel_classes = ('airplane', 'bus', 'cat', 'dog', 'cow', 'elephant', | ||
'umbrella', 'tie', 'snowboard', 'skateboard', 'cup', 'knife', | ||
'cake', 'couch', 'keyboard', 'sink', 'scissors') | ||
all_classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', | ||
'train', 'truck', 'boat', 'bench', 'bird', 'cat', 'dog', | ||
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', | ||
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', | ||
'skis', 'snowboard', 'kite', 'skateboard', 'surfboard', | ||
'bottle', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', | ||
'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'pizza', | ||
'donut', 'cake', 'chair', 'couch', 'bed', 'toilet', 'tv', | ||
'laptop', 'mouse', 'remote', 'keyboard', 'microwave', 'oven', | ||
'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', | ||
'scissors', 'toothbrush') | ||
|
||
train_metainfo = dict(classes=base_classes) | ||
test_metainfo = dict( | ||
classes=all_classes, | ||
base_classes=base_classes, | ||
novel_classes=novel_classes) | ||
|
||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations', with_bbox=True), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict( | ||
type='RandomChoice', | ||
transforms=[ | ||
[ | ||
dict( | ||
type='RandomChoiceResize', | ||
scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), | ||
(608, 1333), (640, 1333), (672, 1333), (704, 1333), | ||
(736, 1333), (768, 1333), (800, 1333)], | ||
keep_ratio=True) | ||
], | ||
[ | ||
dict( | ||
type='RandomChoiceResize', | ||
# The radio of all image in train dataset < 7 | ||
# follow the original implement | ||
scales=[(400, 4200), (500, 4200), (600, 4200)], | ||
keep_ratio=True), | ||
dict( | ||
type='RandomCrop', | ||
crop_type='absolute_range', | ||
crop_size=(384, 600), | ||
allow_negative_crop=True), | ||
dict( | ||
type='RandomChoiceResize', | ||
scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), | ||
(608, 1333), (640, 1333), (672, 1333), (704, 1333), | ||
(736, 1333), (768, 1333), (800, 1333)], | ||
keep_ratio=True) | ||
] | ||
]), | ||
dict( | ||
type='PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||
'scale_factor', 'flip', 'flip_direction', 'text', | ||
'custom_entities')) | ||
] | ||
|
||
test_pipeline = [ | ||
dict( | ||
type='LoadImageFromFile', backend_args=None, | ||
imdecode_backend='pillow'), | ||
dict( | ||
type='FixScaleResize', | ||
scale=(800, 1333), | ||
keep_ratio=True, | ||
backend='pillow'), | ||
dict(type='LoadAnnotations', with_bbox=True), | ||
dict( | ||
type='PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||
'scale_factor', 'text', 'custom_entities', | ||
'tokens_positive')) | ||
] | ||
|
||
train_dataloader = dict( | ||
dataset=dict( | ||
_delete_=True, | ||
type='CocoDataset', | ||
metainfo=train_metainfo, | ||
data_root=data_root, | ||
ann_file='zero-shot/instances_train2017_seen_2.json', | ||
data_prefix=dict(img='train2017/'), | ||
return_classes=True, | ||
filter_cfg=dict(filter_empty_gt=False, min_size=32), | ||
pipeline=train_pipeline)) | ||
|
||
val_dataloader = dict( | ||
batch_size=1, | ||
num_workers=2, | ||
persistent_workers=True, | ||
drop_last=False, | ||
sampler=dict(type='DefaultSampler', shuffle=False), | ||
dataset=dict( | ||
type='CocoDataset', | ||
metainfo=test_metainfo, | ||
data_root=data_root, | ||
ann_file='zero-shot/instances_val2017_all_2.json', | ||
data_prefix=dict(img='val2017/'), | ||
test_mode=True, | ||
pipeline=test_pipeline, | ||
return_classes=True, | ||
)) | ||
test_dataloader = val_dataloader | ||
|
||
val_evaluator = dict( | ||
type='OVCocoMetric', | ||
ann_file=data_root + 'zero-shot/instances_val2017_all_2.json', | ||
metric='bbox', | ||
format_only=False) | ||
test_evaluator = val_evaluator | ||
|
||
optim_wrapper = dict( | ||
_delete_=True, | ||
type='OptimWrapper', | ||
optimizer=dict(type='AdamW', lr=0.00005, weight_decay=0.0001), | ||
clip_grad=dict(max_norm=0.1, norm_type=2), | ||
paramwise_cfg=dict( | ||
custom_keys={ | ||
'absolute_pos_embed': dict(decay_mult=0.), | ||
'backbone': dict(lr_mult=0.1), | ||
# 'language_model': dict(lr_mult=0), | ||
})) | ||
|
||
# learning policy | ||
max_epochs = 12 | ||
param_scheduler = [ | ||
dict( | ||
type='MultiStepLR', | ||
begin=0, | ||
end=max_epochs, | ||
by_epoch=True, | ||
milestones=[8, 11], | ||
gamma=0.1) | ||
] | ||
train_cfg = dict(max_epochs=max_epochs, val_interval=1) | ||
|
||
default_hooks = dict( | ||
checkpoint=dict( | ||
max_keep_ckpts=1, save_best='coco/novel_ap50', rule='greater')) | ||
|
||
load_from = 'epoch_30.pth' |
120 changes: 120 additions & 0 deletions
120
configs/mm_grounding_dino/lvis/grounding_dino_swin-t_finetune_16xb4_1x_lvis_866_337.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
_base_ = '../grounding_dino_swin-t_pretrain_obj365.py' | ||
|
||
data_root = 'data/lvis/' | ||
|
||
model = dict(test_cfg=dict( | ||
max_per_img=300, | ||
chunked_size=40, | ||
)) | ||
|
||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations', with_bbox=True), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict( | ||
type='RandomChoice', | ||
transforms=[ | ||
[ | ||
dict( | ||
type='RandomChoiceResize', | ||
scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), | ||
(608, 1333), (640, 1333), (672, 1333), (704, 1333), | ||
(736, 1333), (768, 1333), (800, 1333)], | ||
keep_ratio=True) | ||
], | ||
[ | ||
dict( | ||
type='RandomChoiceResize', | ||
# The radio of all image in train dataset < 7 | ||
# follow the original implement | ||
scales=[(400, 4200), (500, 4200), (600, 4200)], | ||
keep_ratio=True), | ||
dict( | ||
type='RandomCrop', | ||
crop_type='absolute_range', | ||
crop_size=(384, 600), | ||
allow_negative_crop=True), | ||
dict( | ||
type='RandomChoiceResize', | ||
scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), | ||
(608, 1333), (640, 1333), (672, 1333), (704, 1333), | ||
(736, 1333), (768, 1333), (800, 1333)], | ||
keep_ratio=True) | ||
] | ||
]), | ||
dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), | ||
dict( | ||
type='RandomSamplingNegPos', | ||
tokenizer_name=_base_.lang_model_name, | ||
num_sample_negative=85, | ||
# change this | ||
label_map_file='data/lvis/annotations/lvis_v1_label_map_norare.json', | ||
max_tokens=256), | ||
dict( | ||
type='PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||
'scale_factor', 'flip', 'flip_direction', 'text', | ||
'custom_entities', 'tokens_positive', 'dataset_mode')) | ||
] | ||
|
||
train_dataloader = dict( | ||
dataset=dict( | ||
_delete_=True, | ||
type='ClassBalancedDataset', | ||
oversample_thr=1e-3, | ||
dataset=dict( | ||
type='ODVGDataset', | ||
data_root=data_root, | ||
need_text=False, | ||
label_map_file='annotations/lvis_v1_label_map_norare.json', | ||
ann_file='annotations/lvis_v1_train_od_norare.json', | ||
data_prefix=dict(img=''), | ||
filter_cfg=dict(filter_empty_gt=False, min_size=32), | ||
return_classes=True, | ||
pipeline=train_pipeline))) | ||
|
||
val_dataloader = dict( | ||
dataset=dict( | ||
data_root=data_root, | ||
type='LVISV1Dataset', | ||
ann_file='annotations/lvis_v1_minival_inserted_image_name.json', | ||
data_prefix=dict(img=''))) | ||
test_dataloader = val_dataloader | ||
|
||
val_evaluator = dict( | ||
_delete_=True, | ||
type='LVISFixedAPMetric', | ||
ann_file=data_root + | ||
'annotations/lvis_v1_minival_inserted_image_name.json') | ||
test_evaluator = val_evaluator | ||
|
||
optim_wrapper = dict( | ||
_delete_=True, | ||
type='OptimWrapper', | ||
optimizer=dict(type='AdamW', lr=0.00005, weight_decay=0.0001), | ||
clip_grad=dict(max_norm=0.1, norm_type=2), | ||
paramwise_cfg=dict( | ||
custom_keys={ | ||
'absolute_pos_embed': dict(decay_mult=0.), | ||
'backbone': dict(lr_mult=0.1), | ||
# 'language_model': dict(lr_mult=0), | ||
})) | ||
|
||
# learning policy | ||
max_epochs = 12 | ||
param_scheduler = [ | ||
dict( | ||
type='MultiStepLR', | ||
begin=0, | ||
end=max_epochs, | ||
by_epoch=True, | ||
milestones=[8, 11], | ||
gamma=0.1) | ||
] | ||
train_cfg = dict(max_epochs=max_epochs, val_interval=3) | ||
|
||
default_hooks = dict( | ||
checkpoint=dict( | ||
max_keep_ckpts=3, save_best='lvis_fixed_ap/AP', rule='greater')) | ||
|
||
load_from = 'epoch_30.pth' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.