This is a PyTorch implementation of our paper:
"HyNet: Learning Local Descriptor with Hybrid Similarity Measure and Triplet Loss"
Yurun Tian, Axel Barroso-Laguna, Tony Ng, Vassileios Balntas, Krystian Mikolajczyk. NeurIPS 2020. [arXiv]
- Python 3
- PyTorch tested on 1.4.0-1.9.0
- opencv-python (cv2) tested on 3.3.0.10
- numpy
- PIL
- tqdm
- We provide codes for training on the UBC data set and the HPatches data set. The downloaded data should be organised as the following folder structure:
data_root
-- liberty
-- notredame
-- yosemite
-- hpatches-benchmark-master
Specify the training data path and saving path for the code:
python train.py --data_root=data_root --network_root=save_root
- To accelerate the training, all the data needed will be generated and saved at the first run.
If you use this repository in your work, please cite our paper:
@inproceedings{hynet2020,
author = {Tian, Yurun and Barroso Laguna, Axel and Ng, Tony and Balntas, Vassileios and Mikolajczyk, Krystian},
title = {HyNet: Learning Local Descriptor with Hybrid Similarity Measure and Triplet Loss},
booktitle = {NeurIPS},
year = {2020}
}