Skip to content

Python package for seamless data integration from multiple sources like CSV, Excel, Google Sheets, and MongoDB. It simplifies data loading and transformation with a unified interface, supporting future expansions to more databases and cloud storage services.

License

Notifications You must be signed in to change notification settings

yuvaneshkm/dbsconnector

Repository files navigation

Database Connector Package

Overview

dbsconnector is a Python package designed to simplify data integration from various sources, including CSV, Excel, Google Sheets, and MongoDB. The package provides a unified interface to connect, load, and process data with minimal setup, making it easier for Developers and Data Scientists to work across multiple data formats.

Current Features:

  • Connect to CSV files and load them into a Pandas DataFrame
  • Handle Excel files with multiple sheets
  • Fetch data from Google Sheets using an API key
  • Interact with MongoDB collections

Future Features (Upcoming):

  • Support for more databases (SQL, NoSQL)
  • Cloud storage integration (AWS S3, Google Cloud, etc.)
  • API-based data sources

Installation

To install the package, use pip:

pip install dbsconnector==1.4

How to use this package?

Connecting to csv

# import the module:
from dbsconnector.databases import CSV

# load csv file:
df = CSV().load_csv(filepath="filedir/filename.csv", delimiter=",")

# convert dataframe to csv file:
CSV().to_csv(data=df, filepath="filepath.csv")

Connecting to Excel

# import the module:
from dbsconnector.databases import Excel

# load the data:
df = Excel().load_excelsheet(filepath='filedir/filename.xlsx', sheet_name='sheet_name')

# convert dataframe to excel sheet:
Excel().to_excel(data=df, filepath='filedir/filename.xlsx', sheet_name='sheet_name')

Connecting to gsheet

# import the module:
from dbsconnector.databases import GSheet

# load the data:
df = GSheet().load_gsheet(gsheet_id='17r9f4BL7sjmdLBnt92OdQP3CHK5bdT3hozg6DUJXGqU',sheet_name='sample_sheet')

Connecting to MongoDB

# import the module:
from dbsconnector.databases import MongoDB

# load data from mongodb:
df = MongoDB(host_url="mongodb://localhost:27017").load_data(database="database_name", collection_name="collection_name")

# upload data to mongodb:
MongoDB(host_url="mongodb://localhost:27017").upload_data(database="database_name", collection_name="collection_name", data=df)

# upload any kind of objects (preprocessor object or ML model object) to mongodb:
MongoDB(host_url="mongodb://localhost:27017").upload_object(database="database_name", collection_name="collection_name", object_name="preprocessor_object", object_=preprocessor)

# loading object from mongodb:
pre_obj = MongoDB(host_url="mongodb://localhost:27017").load_object(database="database_name", collection_name="collection_name", object_name="preprocessor_object")

Contributions

  • Contributions are welcome! Please open an issue or submit a pull request on GitHub for adding new features, fixing bugs, or improving documentation. Open-source collaboration is highly encouraged!

License

This project is licensed under the MIT License.

Contact

For any questions or suggestions, please contact yuvaneshkm05@gmail.com

Connect

Connect with me on LinkedIn

About

Python package for seamless data integration from multiple sources like CSV, Excel, Google Sheets, and MongoDB. It simplifies data loading and transformation with a unified interface, supporting future expansions to more databases and cloud storage services.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages