Skip to content

ywwbill/YWWTools-v2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YWW Tools

A package of my (Weiwei Yang's) various tools (most for NLP). Feel free to email me at wwyang@cs.umd.edu with any questions.

Check Out

git clone git@github.com:ywwbill/YWWTools-v2.git

Dependencies

  • Java 8.
  • Files in lib/.
  • Files in dict/.

Use YWW Tools in Command Line

java -cp YWWTools-v2.jar:lib/* yang.weiwei.Tools <config-file>
  • Windows users
    • Please replace YWWTools-v2.jar:lib/* with YWWTools-v2.jar;lib/*.
    • If you encounter any encoding problems in command line (especially when processing Chinese), please add -Dfile.encoding=utf8 in your command.
  • In <config-file>, specify the tool you want to use:
     tool=<tool-name>
    
  • Supported <tool-name> (case unsensitive) include
    • LDA: Latent Dirichlet allocation. Include a variety of extensions.
    • TLDA: Tree LDA.
    • MTM: Multilingual Topic Model.
    • WSBM: Weighted stochastic block model. Find blocks in a network.
    • SCC: Strongly connected components.
    • Stoplist: Remove stop words. Support English only, but can support other languages given dictionary.
    • Lemmatizer: Lemmatize POS-tagged corpus. Support English only, but can support other languages given dictionary.
    • POS-Tagger: Tag words' POS. Support English only, but can support other languages given trained models.
    • Stemmer: Stem words. Support English only.
    • Tokenizer: Tokenize corpus. Support English only, but can support other languages given trained models.
    • Corpus-Converter: Convert word corpus into indexed corpus (for LDA) and vice versa.
    • Tree Builder: Build tree priors from word associations.
  • You can always set help to true to see help information of
    • supported tool names if you don't specify a tool name:
       help=true
      
    • a specific tool if you specify it (take LDA as an example):
       help=true
       tool=lda
      

LDA (Latent Dirichlet Allocation) in Command Line

tool=lda
model=lda
vocab=<vocab-file>
corpus=<corpus-file>
trained_model=<model-file>
  • Implementation of Blei et al. (2003).
  • Required arguments
    • <vocab-file>: Vocabulary file. Each line contains a unique word.

    • <corpus-file>: Corpus file in which documents are represented by word indexes and frequencies. Each line contains a document in the following format

       <doc-len> <word-type-1>:<frequency-1> <word-type-2>:<frequency-2> ... <word-type-n>:<frequency-n>
      

      <doc-len> is the total number of tokens in this document. <word-type-i> denotes the i-th word in <vocab-file>, starting from 0. Words with zero frequency can be omitted.

    • <model-file>: Trained model file in JSON format. Read and written by program.

  • Optional arguments
    • model=<model-name>: The topic model you want to use (default: LDA). Supported <model-name> (case unsensitive) are
    • test=true: Use the model for test (default: false).
    • verbose=true: Print log to console (default:true).
    • alpha=<alpha-value>: Parameter of Dirichlet prior of document distribution over topics (default: 1.0). Must be a positive real number.
    • beta=<beta-value>: Parameter of Dirichlet prior of topic distribution over words (default: 0.1). Must be a positive real number.
    • topics=<num-topics>: Number of topics (default: 10). Must be a positive integer.
    • iters=<num-iters>: Number of iterations (default: 100). Must be a positive integer.
    • update=false: Update alpha while sampling (default: false).
    • update_interval=<update-interval>: Interval of updating alpha (default: 10). Must be a positive integer.
    • theta=<theta-file>: File for document distribution over topics. Each line contains a document's topic distribution. Topic weights are separated by space.
    • output_topic=<topic-file>: File for showing topics.
    • topic_count=<topic-count-file>: File for document-topic counts.
    • top_word=<num-top-word>: Number of words to give when showing topics (default: 10). Must be a positive integer.

RTM: Relational Topic Model

tool=lda
model=rtm
vocab=<vocab-file>
corpus=<corpus-file>
trained_model=<model-file>
rtm_train_graph=<rtm-train-graph-file>
  • Implementation of Chang and Blei (2010).
  • Jointly models topics and document links.
  • Extends LDA.
  • Semi-optional arguments
    • rtm_train_graph=<rtm-train-graph-file> [optional in test]: Link file for RTM to train. Each line contains an edge in the format node-1 \t node-2 \t weight. Node number starts from 0. weight must be a non-negative integer. weight is either 0 or 1 and is optional. Its default value is 1 if not specified.
    • rtm_test_graph=<rtm-test-graph-file> [optional in training]: Link file for RTM to evaluate. Can be the same with RTM train graph. Format is the same as <rtm-train-graph-file>.
  • Optional arguments
    • nu=<nu-value>: Variance of normal priors for weight vectors/matrices in RTM and its extensions (default: 1.0). Must be a positive real number.
    • plr_interval=<compute-PLR-interval>: Interval of computing predictive link rank (default: 20). Must be a positive integer.
    • neg=true: Sample negative links (default: false).
    • neg_ratio=<neg-ratio>: The ratio of number of negative links to number of positive links (default 1.0). Must be a positive real number.
    • pred=<pred-file>: Predicted document link probability matrix file.
    • reg=<reg-file>: Doc-doc regression value file.
    • directed=true: Set all edges directed (default: false).

Lex-WSB-RTM: RTM with Lexical Weights and Weighted Stochastic Block Priors

tool=lda
model=lex-wsb-rtm
vocab=<vocab-file>
corpus=<corpus-file>
trained_model=<model-file>
rtm_train_graph=<rtm-train-graph-file>
  • Extends RTM.
  • Optional arguments
    • wsbm_graph=<wsbm-graph-file>: Link file for WSBM to find blocks. See WSBM for details.
    • alpha_prime=<alpha-prime-value>: Parameter of Dirichlet prior of block distribution over topics (default: 1.0). Must be a positive real number.
    • a=<a-value>: Parameter of Gamma prior for block link rates (default: 1.0). Must be a positive real number.
    • b=<b-value>: Parameter of Gamma prior for block link rates (default: 1.0). Must be a positive real number.
    • gamma=<gamma-value>: Parameter of Dirichlet prior for block distribution (default: 1.0). Must be a positive real number.
    • blocks=<num-blocks>: Number of blocks (default: 10). Must be a positive integer.
    • output_wsbm=<wsbm-output-file>: File for WSBM-identified blocks. See WSBM for details.
    • block_feature=true: Include block features in link prediction (default: false).

Lex-WSB-Med-RTM: Lex-WSB-RTM with Hinge Loss

tool=lda
model=lex-wsb-med-rtm
vocab=<vocab-file>
corpus=<corpus-file>
trained_model=<model-file>
rtm_train_graph=<rtm-train-graph-file>

SLDA: Supervised LDA

tool=lda
model=slda
vocab=<vocab-file>
corpus=<corpus-file>
trained_model=<model-file>
label=<label-file>
  • Implementation of McAuliffe and Blei (2008).
  • Jointly models topics and document labels. Support multi-class classification.
  • Extends LDA.
  • Semi-optional arguments
    • label=<label-file> [optional in test]: Label file. Each line contains corresponding document's numeric label. If a document label is not available, leave the corresponding line empty.
  • Optional arguments
    • sigma=<sigma-value>: Variance for the Gaussian generation of response variable in SLDA (default: 1.0). Must be a positive real number.
    • nu=<nu-value>: Variance of normal priors for weight vectors in SLDA and its extensions (default: 1.0). Must be a positive real number.
    • pred=<pred-file>: Predicted label file.
    • reg=<reg-file>: Regression value file.

BS-LDA: Binary SLDA

tool=lda
model=bs-lda
vocab=<vocab-file>
corpus=<corpus-file>
trained_model=<model-file>
label=<label-file>
  • For binary classification only.
  • Extends SLDA.
  • Label is either 1 or 0.

Lex-WSB-BS-LDA: BS-LDA with Lexcial Weights and Weighted Stochastic Block Priors

tool=lda
model=lex-wsb-bs-lda
vocab=<vocab-file>
corpus=<corpus-file>
trained_model=<model-file>
label=<label-file>
  • Extends BS-LDA.
  • Optional arguments
    • wsbm_graph=<wsbm-graph-file>: Link file for WSBM to find blocks. See WSBM for details.
    • alpha_prime=<alpha-prime-value>: Parameter of Dirichlet prior of block distribution over topics (default: 1.0). Must be a positive real number.
    • a=<a-value>: Parameter of Gamma prior for block link rates (default: 1.0). Must be a positive real number.
    • b=<b-value>: Parameter of Gamma prior for block link rates (default: 1.0). Must be a positive real number.
    • gamma=<gamma-value>: Parameter of Dirichlet prior for block distribution (default: 1.0). Must be a positive real number.
    • blocks=<num-blocks>: Number of blocks (default: 10). Must be a positive integer.
    • directed=true: Set all edges directed (default: false).
    • output_wsbm=<wsbm-output-file>: File for WSBM-identified blocks. See WSBM for details.

Lex-WSB-Med-LDA: Lex-WSB-BS-LDA with Hinge Loss

tool=lda
model=lex-wsb-med-lda
vocab=<vocab-file>
corpus=<corpus-file>
trained_model=<model-file>
label=<label-file>

BP-LDA: LDA with Block Priors

tool=lda
model=bp-lda
vocab=<vocab-file>
corpus=<corpus-file>
trained_model=<model-file>
block_graph=<block-graph-file>
  • Use priors from pre-computed blocks.
  • Extends LDA.
  • Semi-optional arguments
    • block_graph=<block-graph-file> [optional in test]: Pre-computed block file. Each line contains a block and consists of one or more documents denoted by document numbers. Document numbers are separated by space.
  • Optional arguments
    • alpha_prime=<alpha-prime-value>: Parameter of Dirichlet prior of block distribution over topics (default: 1.0). Must be a positive real number.

ST-LDA: Single Topic LDA

tool=lda
model=st-lda
vocab=<vocab-file>
corpus=<corpus-file>
trained_model=<model-file>
short_corpus=<short-corpus-file>
  • Implementation of Hong et al. (2016).
  • Each document can only be assigned to one topic.
  • Extends LDA.
  • Semi-optional arguments
    • short_corpus=<short-corpus-file> [at least one of short_corpus and corpus should be specified]: Short corpus file.
  • Optional arguments
    • short_theta=<short-theta-file>: Short documents' background topic distribution file.
    • short_topic_assign=<short-topic-assign-file>: Short documents' topic assignment file.

WSB-TM: Weighted Stochastic Block Topic Model

tool=lda
model=wsb-tm
vocab=<vocab-file>
corpus=<corpus-file>
trained_model=<model-file>
wsbm_graph=<wsbm-graph-file>
  • Use priors from WSBM-computed blocks.
  • Extends LDA.
  • Semi-optional arguments
    • wsbm_graph=<wsbm-graph-file> [optional in test]: Link file for WSBM to find blocks. See WSBM for details.
  • Optional arguments
    • alpha_prime=<alpha-prime-value>: Parameter of Dirichlet prior of block distribution over topics (default: 1.0). Must be a positive real number.
    • a=<a-value>: Parameter of Gamma prior for block link rates (default: 1.0). Must be a positive real number.
    • b=<b-value>: Parameter of Gamma prior for block link rates (default: 1.0). Must be a positive real number.
    • gamma=<gamma-value>: Parameter of Dirichlet prior for block distribution (default: 1.0). Must be a positive real number.
    • blocks=<num-blocks>: Number of blocks (default: 10). Must be a positive integer.
    • directed=true: Set all edges directed (default: false).
    • output_wsbm=<wsbm-output-file>: File for WSBM-identified blocks. See WSBM for details.

tLDA in Command Line

tool=tlda
vocab=<vocab-file>
tree=<tree-prior-file>
corpus=<corpus-file>
trained_model=<model-file>
  • Implementation of tree LDA (Boyd-Graber et al., 2007).
  • Required arguments
    • <vocab-file>: Vocabulary file. Each line contains a unique word.

    • <tree-prior-file>: Tree prior file. Generated by Tree Builder

    • <corpus-file>: Corpus file in which documents are represented by word indexes and frequencies. Each line contains a document in the following format

       <doc-len> <word-type-1>:<frequency-1> <word-type-2>:<frequency-2> ... <word-type-n>:<frequency-n>
      

      <doc-len> is the total number of tokens in this document. <word-type-i> denotes the i-th word in <vocab-file>, starting from 0. Words with zero frequency can be omitted.

    • <model-file>: Trained model file. Read and written by program.

  • Optional arguments
    • test=true: Use the model for test (default: false).
    • verbose=true: Print log to console (default: true).
    • alpha=<alpha-value>: Parameter of Dirichlet prior of document distribution over topics (default: 0.01). Must be a positive real number.
    • beta=<beta-value>: Parameter of Dirichlet prior of topic distribution over words (default: 0.01). Must be a positive real number.
    • topics=<num-topics>: Number of topics (default: 10). Must be a positive integer.
    • iters=<num-iters>: Number of iterations (default: 100). Must be a positive integer.
    • update=false: Update alpha while sampling (default: false).
    • update_interval=<update-interval>: Interval of updating alpha (default: 10). Must be a positive integer.
    • theta=<theta-file>: File for document distribution over topics. Each line contains a document's topic distribution. Topic weights are separated by space.
    • output_topic=<topic-file>: File for showing topics.
    • topic_count=<topic-count-file>: File for document-topic counts.
    • top_word=<num-top-word>: Number of words to give when showing topics (default: 10). Must be a positive integer.

MTM in Command Line

tool=mtm
num_langs=<num-languages>
dict=<dict-file>
vocab=<vocab-files>
corpus=<corpus-files>
trained_model=<model-file>
  • Implementation of Multilingual Topic Model (Yang et al., 2019).
  • Required arguments
    • <num-languages>: Number of languages. Must be a postive integer greater than 1.

    • <dict-file>: Dictionary file. Each line contains a word translation pair, represented by four elements separated by tab (\t): language ID of the first word, first word, language ID of the second word, second word.

    • <vocab-files>: Vocabulary files. One file for each language. File names are separated by comma (,). Each line contains a unique word.

    • <corpus-files>: Corpus files in which documents are represented by word indexes and frequencies. File names are separated by comma (,). One file for each language. Each line contains a document in the following format

       <doc-len> <word-type-1>:<frequency-1> <word-type-2>:<frequency-2> ... <word-type-n>:<frequency-n>
      

      <doc-len> is the total number of tokens in this document. <word-type-i> denotes the i-th word in <vocab-file>, starting from 0. Words with zero frequency can be omitted.

    • <model-file>: Trained model file. Read and written by program.

  • Optional arguments
    • test=true: Use the model for test (default: false).
    • verbose=true: Print log to console (default: true).
    • alpha=<alpha-values>: Parameter of Dirichlet prior of document distribution over topics (default: 0.01). One value for each language. Values separated by comma (,). Must be a positive real number.
    • beta=<beta-values>: Parameter of Dirichlet prior of topic distribution over words (default: 0.01). One value for each language. Values separated by comma (,). Must be a positive real number.
    • topics=<num-topics>: Number of topics (default: 10). One value for each language. Values separated by comma (,). Must be a positive integer.
    • iters=<num-iters>: Number of iterations (default: 100). Must be a positive integer.
    • update=false: Update alpha while sampling (default: false).
    • update_interval=<update-interval>: Interval of updating alpha (default: 10). Must be a positive integer.
    • theta=<theta-files>: Files for document distribution over topics. One file for each language. File names are separated by comma (,). Each line contains a document's topic distribution. Topic weights are separated by space.
    • rho=<rho-file>: File for topic transformation matrices. Assuming there are $N$ languages, the file contains $N(N-1)$ matrices. Each matrix starts by a line of string Rho[i][j] where i and j indicate two languages. The following $K_i$ rows contains the topic transformation matrix from language i to language j, and each row has $K_j$ values separated by spaces, where $K_i$ and $K_j$ are the numbers of topics in languages i and j respectively.
    • output_topic=<topic-file>: File for showing topics.
    • topic_count=<topic-count-file>: Files for document-topic counts. One file for each language. File names are separated by comma (,).
    • top_word=<num-top-word>: Number of words to give when showing topics (default: 10). Must be a positive integer.
    • reg=<regularization-option>: Regularization option (default: 0). 0 for no regularization, 1 for L1 norm, 2 for L2 norm, 3 for entropy, 4 for identity matrix.
    • lambda=<lambda-value>: The regularization coefficient (default: 0.0). Only effective when reg is not 0.
    • tfidf=true: Use TF-IDF weights as word translation pairs' weights (default: false).
    • word_tf_threshold=<word-term-frequency-threshold>: Ignore the word translation pairs if either word's term frequency is equal or lower than the given threshold (default: 0). One value for each language. Values are separated by comma (,). Must be non-negative integers.

Other Tools in Command Line

WSBM: Weighted Stochastic Block Model

tool=wsbm
nodes=<num-nodes>
blocks=<num-blocks>
graph=<graph-file>
output=<output-file>
  • Implementation of Aicher et al. (2014).
  • Find latent blocks in a network, such that nodes in the same block are densely connected and nodes in different blocks are sparsely connected.
  • Required arguments
    • <num-nodes>: Number of nodes in the graph. Must be a positive integer.
    • <num-blocks>: Number of blocks. Must be a positive integer.
    • <graph-file>: Graph file. Each line contains an edge in the format node-1 \t node-2 \t weight. Node number starts from 0. weight must be a non-negative integer. weight is optional. Its default value is 1 if not specified.
    • <output-file>: Result file. The i-th line contains the block assignment of i-th node.
  • Optional arguments
    • directed=true: Set the edges as directed (default: false).
    • a=<a-value>: Parameter for edge rates' Gamma prior (default: 1.0). Must be a positive real number.
    • b=<b-value>: Parameter for edge rates' Gamma prior (default: 1.0). Must be a positive real number.
    • gamma=<gamma-value>: Parameter for block distribution's Dirichlet prior (default 1.0). Must be a positive real number.
    • iters=<num-iters>: Number of iterations (default: 100). Must be a positive integer.
    • verbose=true: Print log to console (default: true).

SCC: Strongly Connected Components

tool=scc
nodes=<num-nodes>
graph=<graph-file>
output=<output-file>
  • New implementation.
  • Find strongly connected components in an undirected graph. In each component, every node is reachable from any other nodes in the same component.
  • Arguments
    • <num-nodes>: Number of nodes in the graph. Must be a positive integer.
    • <graph-file>: Graph file. Each line contains an edge in the format node-1 \t node-2. Node number starts from 0.
    • <output-file>: Result file. Each line contains a strongly connected component and consists of one or more nodes denoted by node numbers. Node numbers are separated by space.

Stoplist

tool=stoplist
corpus=<corpus-file>
output=<output-file>
  • New implementation.
  • Only supports English, but can support other languages if dictionary is provided.
  • Required arguments
    • <corpus-file>: Corpus file with stop words. Each line contains a document. Words are separated by space.
    • <output-file>: Corpus file without stop words. Each line contains a document. Words are separated by space.
  • Optional arguments
    • dict=<dict-file>: Dictionary file name. Each line contains a stop word.

Lemmatizer

tool=lemmatizer
corpus=<corpus-file>
output=<output-file>
  • A re-packaging of opennlp.tools.lemmatizer.SimpleLemmatizer.
  • Only supports English, but can support other languages if dictionary is provided.
  • Required arguments
    • <corpus-file>: Unlemmatized corpus file. Each line contains a unlemmatized, tokenized, and POS-tagged document.
    • <output-file>: Lemmatized corpus file. Each line contains a lemmatized document. Words are separated by space.
  • Optional arguments
    • dict=<dict-file>: Dictionary file name. Each line contains a rule in the format unlemmatized-word \t POS \t lemmatized-word.

POS Tagger

tool=pos-tagger
corpus=<corpus-file>
output=<output-file>
  • A re-packaing of opennlp.tools.postag.POSTaggerME (https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.postagger)
  • Only supports English, but can support other languages if model is provided.
  • Required arguments
    • <corpus-file>: Untagged corpus file. Each line contains a tokenized untagged document.
    • <output-file>: Tagged corpus file. Each line contains a tagged document. Each word is annotated as word_POS.
  • Optional arguments
    • model=<model-file>: Model file name.

Stemmer

tool=stemmer
corpus=<corpus-file>
output=<output-file>
  • A re-packaging of PorterStemmer (http://tartarus.org/~martin/PorterStemmer/index.html)
  • Only supports English.
  • Arguments
    • <corpus-file>: Unstemmed corpus file. Each line contains an unstemmed document. Words are separated by space.
    • <output-file>: Stemmed corpus file. Each line contains a stemmed document. Words are separated by space.

Tokenizer

tool=tokenizer
corpus=<corpus-file>
output=<output-file>
  • A re-packaging of opennlp.tools.tokenize.TokenizerME (https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.tokenizer)
  • Only supports English, but can support other languages if model is provided.
  • Required arguments
    • <corpus-file>: Untokenized corpus file. Each line contains a untokenized document.
    • <output-file>: Tokenized corpus file. Each line contains a tokenized document.
  • Optional arguments
    • model=<model-file>: Model file name.

Corpus Converter

tool=corpus-converter
get_vocab|to_index|to_word=true
word_corpus=<word-corpus-file>
index_corpus=<index-corpus-file>
vocab=<vocab-file>
  • New implementation
  • Arguments
    • get_vocab, to_index, to_word: Only one of them should be true.

      • get_vocab: Collect vocabulary from <word-corpus-file> and write them in <vocab-file>.
      • to_index: Convert a word corpus file <word-corpus-file> into an indexed corpus file <index-corpus-file> and write the vocabulary in <vocab-file>.
      • to_word: Convert an indexed corpus file <index-corpus-file> into a word corpus file <word-corpus-file> given vocabulary file <vocab-file>.
    • <word-corpus-file>: Corpus file in which documents are represented by words. Each line contains a document. Words are separated by space.

    • <index-corpus-file>: Corpus file in which documents are represented by word indexes and frequencies. Not required when using --get-vocab. Each line contains a document in the following format

       <doc-len> <word-type-1>:<frequency-1> <word-type-2>:<frequency-2> ... <word-type-n>:<frequency-n>
      

      <doc-len> is the total number of tokens in this document. <word-type-i> denotes the i-th word in <vocab-file>, starting from 0. Words with zero frequency can be omitted.

    • <vocab-file>: Vocabulary file. Each line contains a unique word.

Tree Builder

tool=tree-builder
vocab=<vocab-file>
score=<score-file>
tree=<tree-file>
  • Implementation of Yang et al. (2017)
  • Arguments
    • <vocab-file>: Vocabulary file. Each line contains a unique word.
    • <score-file>: Word association file. Assume there are V words in <vocab-file>. There are V lines in the <score-file>. Each line corresponds to a word in the vocabulary and contains V float numbers which denote the word's association scores with all other words.
    • <tree-file>: The tree prior file.
  • Optional Arguments
    • type=<tree-type>: Tree prior type. 1 for two-level tree; 2 for hierarchical agglomerative clustering (HAC) tree; 3 for HAC tree with leaf duplication (default 1).
    • child=<num-child>: Number of child nodes per internal node for a two-level tree (default 10).
    • thresh=<threshold>: The confidence threshold for HAC (default 0.0).

Use YWWTools Source Code

To integrate my code into your project, please include YWWTools-v2.jar and everything in lib/ to your project dependency.

Here are examples for running some algorithms in this package. For more information, please look at JavaDoc in doc/.

LDA Code Examples

  • Classes: yang.weiwei.lda.LDA and yang.weiwei.lda.LDAParam.

  • Training code example

      LDAParam param = new LDAParam("vocab_file_name"); //initialize a parameter object and set parameters as needed
      LDA ldaTrain = new LDA(param); // initialize an LDA object
      ldaTrain.readCorpus("corpus_file_name");
      ldaTrain.initialize();
      ldaTrain.sample(100); // set number of iterations as needed
      ldaTrain.writeModel("model_file_name"); // optional, see test code example
      ldaTrain.writeDocTopicDist("theta_file_name"); // optional, write document-topic distribution to file
      ldaTrain.writeResult("topic_file_name", 10); // optional, write top 10 words of each topic to file
      ldaTrain.writeDocTopicCounts("topic_count_file_name") // optional, write document-topic counts to file
    
  • Test code example

      LDAParam param = new LDAParam("vocab_file_name");
      LDA ldaTest = new LDA(ldaTrain, param); // initialize with pre-trained LDA object
      // LDA ldaTest = new LDA("model_file_name", param); // or initialize with an LDA model in a file
      ldaTest.readCorpus("corpus_file_name");
      ldaTest.initialize();
      ldaTest.sample(100); // set number of iterations as needed
      ldaTest.writeDocTopicDist("theta_file_name"); // optional, write document-topic distribution to file
      ldaTest.writeDocTopicCounts("topic_count_file_name"); // optional, write document-topic counts to file
    

RTM

  • Class: yang.weiwei.lda.rtm.RTM.

  • Extends LDA.

  • Training code example

      LDAParam param = new LDAParam("vocab_file_name");
      RTM ldaTrain = new RTM(param);
      ldaTrain.readCorpus("corpus_file_name");
      ldaTrain.readGraph("train_graph_file_name", RTM.TRAIN_GRAPH); // read train graph
      ldaTrain.readGraph("test_graph_file_name", RTM.TEST_GRAPH); // read test graph
      ldaTrain.initialize();
      ldaTrain.sample(100); 
      ldaTrain.writePred("pred_file_name"); // optional, write predicted document link probabilities to file
      ldaTrain.writeRegValues("reg_value_file_name"); // optional, write doc-doc regression values to file
    
  • Test code example

      LDAParam param = new LDAParam("vocab_file_name");
      RTM ldaTest = new RTM(ldaTrain, param);
      // RTM ldaTest = new RTM("model_file_name", param); 
      ldaTest.readCorpus("corpus_file_name");
      ldaTest.readGraph("train_graph_file_name", RTM.TRAIN_GRAPH); // optional
      ldaTest.readGraph("test_graph_file_name", RTM.TEST_GRAPH);
      ldaTest.initialize();
      ldaTest.sample(100); 
      ldaTest.writePred("pred_file_name"); // optional, write predicted document link probabilities to file
      ldaTest.writeRegValues("reg_value_file_name"); // optional, write doc-doc regression values to file
    

Lex-WSB-RTM

  • Class: yang.weiwei.lda.rtm.lex_wsb_rtm.LexWSBRTM.

  • Extends RTM.

  • Training code example

      LDAParam param = new LDAParam("vocab_file_name");
      LexWSBRTM ldaTrain = new LexWSBRTM(param);
      ldaTrain.readCorpus("corpus_file_name");
      ldaTrain.readGraph("train_graph_file_name", RTM.TRAIN_GRAPH); 
      ldaTrain.readGraph("test_graph_file_name", RTM.TEST_GRAPH); 
      ldaTrain.readBlockGraph("wsbm_graph_file_name"); // optional, read graph for WSBM
      ldaTrain.initialize();
      ldaTrain.sample(100); 
      ldaTrain.writeBlocks("block_file_name"); // optional, write WSBM results to file
    
  • Test code example

      LDAParam param = new LDAParam("vocab_file_name");
      LexWSBRTM ldaTest = new LexWSBRTM(ldaTrain, param);
      // LexWSBRTM ldaTest = new LexWSBRTM("model_file_name", param); 
      ldaTest.readCorpus("corpus_file_name");
      ldaTest.readGraph("train_graph_file_name", RTM.TRAIN_GRAPH); // optional
      ldaTest.readGraph("test_graph_file_name", RTM.TEST_GRAPH);
      ldaTest.readBlockGraph("wsbm_graph_file_name"); // optional
      ldaTest.initialize();
      ldaTest.sample(100); 
      ldaTest.writeBlocks("block_file_name"); // optional
    

Lex-WSB-Med-RTM

  • Class: yang.weiwei.lda.rtm.lex_wsb_med_rtm.LexWSBMedRTM.
  • Extends Lex-WSB-RTM.
  • Code examples are the same with Lex-WSB-RTM.

SLDA

  • Class: yang.weiwei.lda.slda.SLDA.

  • Extends LDA.

  • Training code example

      LDAParam param = new LDAParam("vocab_file_name");
      SLDA ldaTrain = new SLDA(param);
      ldaTrain.readCorpus("corpus_file_name");
      ldaTrain.readLabels("label_file_name"); // read label file
      ldaTrain.initialize();
      ldaTrain.sample(100);
      ldaTrain.writePredLabels("pred_label_file_name"); // optional, write predicted labels
      ldaTrain.writeRegValues("reg_value_file_name"); // optioanl, write regression values
    
  • Test code example

      LDAParam param = new LDAParam("vocab_file_name");
      SLDA ldaTest = new SLDA(ldaTrain, param);
      // SLDA ldaTest = new SLDA("model_file_name", param);
      ldaTest.readCorpus("corpus_file_name");
      ldaTest.readLabels("label_file_name"); // optional
      ldaTest.initialize();
      ldaTest.sample(100);
      ldaTest.writePredLabels("pred_label_file_name"); // optional
      ldaTest.writeRegValues("reg_value_file_name"); // optional
    

BS-LDA

  • Class: yang.weiwei.lda.slda.bs_lda.BSLDA
  • Extends SLDA.
  • Code examples are the same with SLDA.

Lex-WSB-BS-LDA

  • Class: yang.weiwei.lda.slda.lex_wsb_bs_lda.LexWSBBSLDA.

  • Extends BS-LDA.

  • Training code example

      LDAParam param = new LDAParam("vocab_file_name");
      LexWSBBSLDA ldaTrain = new LexWSBBSLDA(param);
      ldaTrain.readCorpus("corpus_file_name");
      ldaTrain.readLabels("label_file_name");
      ldaTrain.readBlockGraph("wsbm_graph_file_name"); // optional, read graph for WSBM
      ldaTrain.initialize();
      ldaTrain.sample(100);
      ldaTrain.writeBlocks("block_file_name"); // optional, write WSBM results to file
    
  • Test code example

      LDAParam param = new LDAParam("vocab_file_name");
      LexWSBBSLDA ldaTest = new LexWSBBSLDA(ldaTrain, param);
      // LexWSBBSLDA ldaTest = new LexWSBBSLDA("model_file_name", param);
      ldaTest.readCorpus("corpus_file_name");
      ldaTest.readLabels("label_file_name"); // optional
      ldaTest.readBlockGraph("wsbm_graph_file_name"); // optional
      ldaTest.initialize();
      ldaTest.sample(100);
      ldaTest.writePredLabels("pred_label_file_name"); // optional
      ldaTest.writeBlocks("block_file_name"); // optional
    

Lex-WSB-Med-LDA

BP-LDA

  • Class: yang.weiwei.lda.bp_lda.BPLDA

  • Extends LDA.

  • Training code example

      LDAParam param = new LDAParam("vocab_file_name");
      BPLDA ldaTrain = new BPLDA(param); 
      ldaTrain.readCorpus("corpus_file_name");
      ldaTrain.readBlocks("block_file_name"); // read block file
      ldaTrain.initialize();
      ldaTrain.sample(100);
    
  • Test code example

      LDAParam param = new LDAParam("vocab_file_name");
      BPLDA ldaTest = new BPLDA(ldaTrain, param);
      // BPLDA ldaTest = new BPLDA("model_file_name", param);
      ldaTest.readCorpus("corpus_file_name");
      ldaTest.readBlocks("block_file_name"); // optional
      ldaTest.initialize();
      ldaTest.sample(100); 
    

ST-LDA

  • Class: yang.weiwei.lda.st_lda.STLDA

  • Extends LDA.

  • Training code example

      LDAParam param = new LDAParam("vocab_file_name");
      STLDA ldaTrain = new STLDA(param);
      ldaTrain.readCorpus("long_corpus_file_name");
      ldaTrain.readShortCorpus("short_corpus_file_name");
      ldaTrain.initialize();
      ldaTrain.sample(100);
      ldaTrain.writeShortDocTopicDist("short_theta_file_name"); // optional, write short documents' topic distribution to file
      ldaTrain.writeShortDocTopicAssign("short_topic_assign_file_name"); // optional, write short documents' topic assignments to file
    
  • Test code example

      LDAParam param = new LDAParam("vocab_file_name");
      STLDA ldaTest = new STLDA(ldaTrain, param);
      // STLDA ldaTest = new STLDA("model_file_name", param);
      ldaTest.readCorpus("long_corpus_file_name");
      ldaTest.readShortCorpus("short_corpus_file_name");
      ldaTest.initialize();
      ldaTest.sample(100);
      ldaTest.writeShortDocTopicDist("short_theta_file_name"); // optional
      ldaTest.writeShortDocTopicAssign("short_topic_assign_file_name"); // optional
    

WSB-TM

  • Class: yang.weiwei.lda.wsb_tm.WSBTM

  • Extends LDA.

  • Training code example

      LDAParam param = new LDAParam("vocab_file_name");
      WSBTM ldaTrain = new WSBTM(param); 
      ldaTrain.readCorpus("corpus_file_name");
      ldaTrain.readGraph("wsbm_graph_file_name"); // read graph file
      ldaTrain.initialize();
      ldaTrain.sample(100);
    
  • Test code example

      LDAParam param = new LDAParam("vocab_file_name");
      WSBTM ldaTest = new WSBTM(ldaTrain, param);
      // WSBTM ldaTest = new WSBTM("model_file_name", param);
      ldaTest.readCorpus("corpus_file_name");
      ldaTest.readGraph("wsbm_graph_file_name"); // optional
      ldaTest.initialize();
      ldaTest.sample(100); 
    

tLDA Code Examples

  • Classes: yang.weiwei.tlda.TLDA and yang.weiwei.tlda.TLDAParam.

  • Training code example

      TLDAParam param = new LDAParam("vocab_file_name", "tree_prior_file_name"); //initialize a parameter object and set parameters as needed
      TLDA tldaTrain = new TLDA(param); // initialize a tLDA object
      tldaTrain.readCorpus("corpus_file_name");
      tldaTrain.initialize();
      tldaTrain.sample(100); // set number of iterations as needed
      tldaTrain.writeModel("model_file_name"); // optional, see test code example
      tldaTrain.writeDocTopicDist("theta_file_name"); // optional, write document-topic distribution to file
      tldaTrain.writeWordResult("topic_file_name", 10); // optional, write top 10 words of each topic to file
      tldaTrain.writeDocTopicCounts("topic_count_file_name") // optional, write document-topic counts to file
    
  • Test code example

      TLDAParam param = new TLDAParam("vocab_file_name", "tree_prior_file_name");
      TLDA tldaTest = new TLDA(tldaTrain, param); // initialize with pre-trained tLDA object
      // TLDA tldaTest = new TLDA("model_file_name", param); // or initialize with a TLDA model in a file
      tldaTest.readCorpus("corpus_file_name");
      tldaTest.initialize();
      tldaTest.sample(100); // set number of iterations as needed
      tldaTest.writeDocTopicDist("theta_file_name"); // optional, write document-topic distribution to file
      tldaTest.writeDocTopicCounts("topic_count_file_name"); // optional, write document-topic counts to file
    

Multilingual Topic Model Code Examples

  • Classes: yang.weiwei.mtm.MTM and yang.weiwei.mtm.MTMParam.

  • Training code example

      MTMParam param = new MTMParam(vocabFileNames[]); //initialize a parameter object and set parameters as needed
      MTM mtmTrain = new MTM(param); // initialize a MTM object
      mtmTrain.readCorpus(corpusFileNames[]);
      mtmTrain.readWordAssociations("dict_file_name");
      mtmTrain.initialize();
      mtmTrain.sample(100); // set number of iterations as needed
      mtmTrain.writeModel("model_file_name"); // optional, see test code example
      mtmTrain.writeDocTopicDist(thetaFileNames[]); // optional, write document-topic distribution to files
      mtmTrain.writeResult("topic_file_name", 10); // optional, write top 10 words of each topic to file
      mtmTrain.writeDocTopicCounts(topicCountFileNames[]) // optional, write document-topic counts to files
      mtmTrain.writeTopicTransMatrices("rho_file_name"); // optional, write topic transformation matrices to file
    
  • Test code example

      MTMParam param = new MTMParam(vocabFileNames[]);
      MTM mtmTest = new MTM(mtmTrain, param); // initialize with pre-trained MTM object
      // MTM mtmTest = new MTM("model_file_name", param); // or initialize with a MTM model in a file
      mtmTest.readCorpus(corpusFileNames[]);
      mtmTest.initialize();
      mtmTest.sample(100); // set number of iterations as needed
      mtmTest.writeDocTopicDist(thetaFileNames[]); // optional, write document-topic distribution to files
      mtmTest.writeDocTopicCounts(topicCountFileNames[]); // optional, write document-topic counts to files
    

Other Code Examples

WSBM

  • Classes: yang.weiwei.wsbm.WSBM and yang.weiwei.wsbm.WSBMParam.

  • Code example

      WSBMParam param = new WSBMParam(); // initialize a parameter object and set parameters as needed
      WSBM wsbm = new WSBM(param); // initialize a WSBM object with parameters
      wsbm.readGraph("graph_file_name");
      wsbm.init();
      wsbm.sample(100); // set number of iterations as needed
      wsbm.printResults();
    

SCC

  • Class: yang.weiwei.scc.SCC.

  • Code example

      SCC scc = new SCC(10); // initialize with number of nodes
      scc.readGraph("graph_file_name");
      scc.cluster();
      scc.writeCluster("result_file_name");
    

Tree Builder

  • Class: yang.weiwei.tlda.TreeBuilder.

  • Code example

      TreeBuilder tb = new TreeBuilder();
      tb.build2LevelTree("score_file_name", "vocab_file_name", "tree_file_name", num_Child); // Build a two-level tree
      tb.hac("score_file_name", "vocab_file_name", "tree_file_name", threshold); // Build a tree with hierarchical agglomerative clustering (HAC)
      tb.hacWithLeafDup("score_file_name", "vocab_file_name", "tree_file_name", threshold); // Build a tree with HAC and leaf duplication
    

English Corpus Preprocessing

  • Basically there are two ways to preprocess an English corpus for topic models as follows.
    • tokenization -> stop words removal -> stemming
    • tokenization -> POS tagging -> lemmatization -> stop words removal
  • The first way is quick but with low word readability. The second one takes more time but produce better readability.
  • Finally you may want to remove low (document-)frequency words, in order to accelerate topic modeling without hurting the performance.

Citation

  • If you use Tree Builder, please cite

      @InProceedings{Yang:Boyd-Graber:Resnik-2017,
      	Title = {Adapting Topic Models using Lexical Associations with Tree Priors},
      	Booktitle = {Empirical Methods in Natural Language Processing},
      	Author = {Weiwei Yang and Jordan Boyd-Graber and Philip Resnik},
      	Year = {2017},
      	Location = {Copenhagen, Denmark},
      }
    
  • If you use Lex-WSB-RTM (aka LBS-RTM), Lex-WSB-Med-RTM (aka LBH-RTM), Lex-WSB-BS-LDA, and/or Lex-WSB-Med-LDA, please cite

      @InProceedings{Yang:Boyd-Graber:Resnik-2016,
      	Title = {A Discriminative Topic Model using Document Network Structure},
      	Booktitle = {Association for Computational Linguistics},
      	Author = {Weiwei Yang and Jordan Boyd-Graber and Philip Resnik},
      	Year = {2016},
      	Location = {Berlin, Germany},
      }
    
  • If you use ST-LDA, please cite

      @InProceedings{Hong:Yang:Resnik:Frias-Martinez-2016,
      	Title = {Uncovering Topic Dynamics of Social Media and News: The Case of Ferguson},
      	Booktitle = {International Conference on Social Informatics},
      	Author = {Lingzi Hong and Weiwei Yang and Philip Resnik and Vanessa Frias-Martinez},
      	Year = {2016},
      	Location = {Bellevue, WA, USA}
      }
    
  • If you use MTM, please cite

      @InProceedings{Yang:Boyd-Graber:Resnik-2019,
      	Title = {A Multilingual Topic Model for Learning Weighted Topic Links Across Corpora with Low Comparability},
      	Booktitle = {Empirical Methods in Natural Language Processing},
      	Author = {Weiwei Yang and Jordan Boyd-Graber and Philip Resnik},
      	Year = {2019},
      	Location = {Hong Kong, China},
      }
    

References

LDA: Latent Dirichlet Allocation

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet allocation. Journal of Machine Learning Research.

SLDA: Supervised LDA

Jon D. McAuliffe and David M. Blei. 2008. Supervised topic models. In Proceedings of Advances in Neural Information Processing Systems.

Med-LDA: Max-margin LDA

Jun Zhu, Amr Ahmed, and Eric P. Xing. 2012. MedLDA: Maximum margin supervised topic models. Journal of Machine Learning Research.

Jun Zhu, Ning Chen, Hugh Perkins, and Bo Zhang. 2014. Gibbs max-margin topic models with data augmentation. Journal of Machine Learning Research.

RTM: Relational Topic Model

Jonathan Chang and David M. Blei. 2010. Hierarchical relational models for document networks. The Annals of Applied Statistics.

Lex-WSB-Med-RTM: RTM with WSB-computed Block Priors, Lexical Weights, and Hinge Loss

Weiwei Yang, Jordan Boyd-Graber, and Philip Resnik. 2016. A discriminative topic model using document network structure. In Proceedings of Association for Computational Linguistics.

ST-LDA: Single Topic LDA

Lingzi Hong, Weiwei Yang, Philip Resnik, and Vanessa Frias-Martinez. 2016. Uncovering topic dynamics of social media and news: The case of Ferguson. In Proceedings of International Conference on Social Informatics.

WSBM: Weighted Stochastic Block Model

Christopher Aicher, Abigail Z. Jacobs, and Aaron Clauset. 2014. Learning latent block structure in weighted networks. Journal of Complex Networks.

tLDA: Tree LDA

Jordan Boyd-Graber, David M. Blei, and Xiaojin Zhu. 2007. A topic model for word sense disambiguation. Empirical Methods in Natural Language Processing.

Weiwei Yang, Jordan Boyd-Graber, and Philip Resnik. 2017. Adapting topic models using lexical associations with tree priors. Empirical Methods in Natural Language Processing.

MTM: Multilingual Topic Model

Weiwei Yang, Jordan Boyd-Graber, and Philip Resnik. 2019. A Multilingual Topic Model for Learning Weighted Topic Links Across Corpora with Low Comparability. Empirical Methods in Natural Language Processing.

Back to Top

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages