a dataset consisting of 5,376 annotated images corresponding to 7 categories of urinary sediment particle
- cast
- cryst (crystals)
- epith (epithelial cell)
- epithn (epithelial nuclei)
- eryth (erythrocyte)
- leuko (leukocyte)
- mycete
The dataset is in the PASCAL VOC format.
/VOCdevkit
└── Urinary Sediment Dataset
├── Annotations
├── ImageSets
│ └── Main
│ ├── test.txt
│ ├── train.txt
│ └── val.txt
└── JPEGImages
- train set: 4256 images
- val set: 852 images
- test set: 268 images
https://drive.google.com/drive/folders/18VqmoqK7dVSdxiyEE6qCfIpS8UOqqIBS?usp=sharing
If you find Dataset useful in your research, please consider citing:
@article{liang2018object,
title={Object detection based on deep learning for urine sediment examination},
author={Liang, Yixiong and Tang, Zhihong and Yan, Meng and Liu, Jianfeng},
journal={Biocybernetics and Biomedical Engineering},
volume={38},
number={3},
pages={661--670},
year={2018},
publisher={Elsevier}
}
@article{liang2018end,
title={An End-to-End System for Automatic Urinary Particle Recognition with Convolutional Neural Network},
author={Liang, Yixiong and Kang, Rui and Lian, Chunyan and Mao, Yuan},
journal={Journal of medical systems},
volume={42},
number={9},
pages={165},
year={2018},
publisher={Springer}
}
@INPROCEEDINGS{9054367,
author={M. {Yan} and Q. {Liu} and Z. {Yin} and D. {Wang} and Y. {Liang}},
booktitle={ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={A Bidirectional Context Propagation Network for Urine Sediment Particle Detection in Microscopic Images},
year={2020},
volume={},
number={},
pages={981-985}
}