Implement four neural networks in Tensorflow for multi-class text classification problem.
- A LSTM classifier. See rnn_classifier.py
- A Bidirectional LSTM classifier. See rnn_classifier.py
- A CNN classifier. See cnn_classifier.py. Reference: Implementing a CNN for Text Classification in Tensorflow.
- A C-LSTM classifier. See clstm_classifier.py. Reference: A C-LSTM Neural Network for Text Classification.
- Python 3.x
- Tensorflow > 1.5
- Sklearn > 0.19.0
Training data should be stored in csv file. The first line of the file should be ["label", "content"] or ["content", "label"].
Run train.py to train the models. Parameters:
optional arguments:
--clf CLF Type of classifiers. Default: cnn. You have four
choices: [cnn, lstm, blstm, clstm]
--data_file DATA_FILE
Data file path
--stop_word_file STOP_WORD_FILE
Stop word file path
--language LANGUAGE Language of the data file. You have two choices: [ch,
en]
--min_frequency MIN_FREQUENCY
Minimal word frequency
--num_classes NUM_CLASSES
Number of classes
--max_length MAX_LENGTH
Max document length
--vocab_size VOCAB_SIZE
Vocabulary size
--test_size TEST_SIZE
Cross validation test size
--embedding_size EMBEDDING_SIZE
Word embedding size. For CNN, C-LSTM.
--filter_sizes FILTER_SIZES
CNN filter sizes. For CNN, C-LSTM.
--num_filters NUM_FILTERS
Number of filters per filter size. For CNN, C-LSTM.
--hidden_size HIDDEN_SIZE
Number of hidden units in the LSTM cell. For LSTM, Bi-
LSTM
--num_layers NUM_LAYERS
Number of the LSTM cells. For LSTM, Bi-LSTM, C-LSTM
--keep_prob KEEP_PROB
Dropout keep probability
--learning_rate LEARNING_RATE
Learning rate
--l2_reg_lambda L2_REG_LAMBDA
L2 regularization lambda
--batch_size BATCH_SIZE
Batch size
--num_epochs NUM_EPOCHS
Number of epochs
--decay_rate DECAY_RATE
Learning rate decay rate. Range: (0, 1]
--decay_steps DECAY_STEPS
Learning rate decay steps.
--evaluate_every_steps EVALUATE_EVERY_STEPS
Evaluate the model on validation set after this many
steps
--save_every_steps SAVE_EVERY_STEPS
Save the model after this many steps
--num_checkpoint NUM_CHECKPOINT
Number of models to store
You could run train.py to start training. For example:
python train.py --data_file=./data/data.csv --clf=lstm
After the training is done, you can use tensorboard to see the visualizations of the graph, losses and evaluation metrics:
tensorboard --logdir=./runs/1111111111/summaries
Run test.py to evaluate the trained model
Parameters:
optional arguments:
--test_data_file TEST_DATA_FILE
Test data file path
--run_dir RUN_DIR Restore the model from this run
--checkpoint CHECKPOINT
Restore the graph from this checkpoint
--batch_size BATCH_SIZE
Test batch size
You could run test.py to start evaluation. For example:
python test.py --test_data_file=./data/data.csv --run_dir=./runs/1111111111 --checkpoint=clf-10000