Skip to content

Deep Reinforcement Learning Agent for Artari's Cart-Pole Game

License

Notifications You must be signed in to change notification settings

zackthoutt/cart-pole-drl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cart-Pole Deep Reinforcement Learning

This repository is a simple example of how to train an agent using Q-Learning to play a video game. One of the coolest aspects of this method is that the agent learns how to play the game through self exploration instead of human-labeled data. A major drawback of supervised learning based on human curated data is that the model can, at best, learn how to do a job as well as the humans who curated the data. Humans do a near perfect job solving some problems, but most of the time we are not perfect. By training the agent through its own self play, it can actually become better than humans and devise strategies that have never been used before. This is how AlphaGo is able to play Go at a super-human skill level.

Cart-Pole Agent Demo

Connect with me

If you'd like to collaborate on a project, learn more about me, or just say hi, feel free to contact me using any of the social channels listed below.

About

Deep Reinforcement Learning Agent for Artari's Cart-Pole Game

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published