Skip to content

zahidesatmutlu/custom-yolov8-model-cvat-auto-annotation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Installation serverless YOLOv8 functions on Windows 10 with using the Ubuntu subsystem

  • Navigate to the directory "cvat/serverless/yolov8/nuclio". (If it does not exist, create it.) Copy the necessary files to the directory with the following command.
git clone https://github.com/zahidesatmutlu/custom-yolov8-model-cvat-auto-annotation
cd custom-yolov8-model-cvat-auto-annotation
  • Update the "metadata/annotations/spec" section in the "function.yaml" file with the classes you trained the model with. For example:
metadata:
  name: custom-model-yolov8
  namespace: cvat
  annotations:
    name: custom-model-yolov8
    type: detector
    framework: pytorch
    # change this accordingly to your model output/classes
    spec: |
      [
        { "id": 0, "name": "car" },
        { "id": 1, "name": "person" },
        { "id": 2, "name": "motorcycle" },
        { "id": 3, "name": "truck" }
      ]
  • Copy your model weight in .pt format to the same directory ("cvat/serverless/yolov8/nuclio"). In "main.py" insert the model weight you trained in "model = YOLO('best.pt')" (Line 13).

  • Go back to the "/cvat" directory and deploy the YOLOv8 functions.

./serverless/deploy_cpu.sh serverless/yolov8/nuclio

or

./serverless/deploy_gpu.sh serverless/yolov8/nuclio
  • Open Google Chrome browser and navigate to localhost:8080. You can now view the custom YOLOv8 model for CVAT!

YOLOv8 model for CVAT

About

Deploy your custom YOLOv8 model to CVAT for automatic annotation!

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages