- Navigate to the directory
"cvat/serverless/yolov8/nuclio"
. (If it does not exist, create it.) Copy the necessary files to the directory with the following command.
git clone https://github.com/zahidesatmutlu/custom-yolov8-model-cvat-auto-annotation
cd custom-yolov8-model-cvat-auto-annotation
- Update the
"metadata/annotations/spec"
section in the "function.yaml" file with the classes you trained the model with. For example:
metadata:
name: custom-model-yolov8
namespace: cvat
annotations:
name: custom-model-yolov8
type: detector
framework: pytorch
# change this accordingly to your model output/classes
spec: |
[
{ "id": 0, "name": "car" },
{ "id": 1, "name": "person" },
{ "id": 2, "name": "motorcycle" },
{ "id": 3, "name": "truck" }
]
-
Copy your model weight in .pt format to the same directory (
"cvat/serverless/yolov8/nuclio"
). In "main.py" insert the model weight you trained in"model = YOLO('best.pt')"
(Line 13). -
Go back to the
"/cvat"
directory and deploy the YOLOv8 functions.
./serverless/deploy_cpu.sh serverless/yolov8/nuclio
or
./serverless/deploy_gpu.sh serverless/yolov8/nuclio
- Open Google Chrome browser and navigate to
localhost:8080
. You can now view the custom YOLOv8 model for CVAT!