Code and data for our paper "Causal Walk: Debiasing Multi-hop Fact Verification with Front-door Adjustment" in AAAI 2024.
To reproduce the results in the paper, you need to download the dataset and our pre-trained model from here.
Then you should organize them in the following format.
CausalWalk
├── data
├── pretrained_models
├── outputs
├── data_load_utils.py
├── models.py
├── train_causal_walk_fever_2way.py
├── train_causal_walk_politihop_2way.py
├── train_causal_walk_politihop_3way.py
├── train.sh
└── utils.py
Install python dependencies.
pip install -r requirements.txt
Trained on the FEVER dataset and evaluated on Adversarial FEVER. (2-way)
CUDA_VISIBLE_DEVICES="0" python train_causal_walk_fever_2way.py \
--seed 1234 \
--batch_size 16 \
--lr 2e-5 \
--epochs 20 \
--weight_decay 5e-4 \
--evi_num 5 \
--max_seq_length 128
Trained on the PolitiHop dataset and evaluated on Adversarial PolitiHop. (3-way)
CUDA_VISIBLE_DEVICES="0" python train_causal_walk_politihop_3way.py \
--seed 1234 \
--batch_size 4 \
--lr 1e-5 \
--epochs 20 \
--weight_decay 5e-4 \
--evi_num 20 \
--max_seq_length 128
Trained on the PolitiHop dataset and evaluated on Symmetric PolitiHop. (2-way)
CUDA_VISIBLE_DEVICES="0" python train_causal_walk_politihop_2way.py \
--seed 1234 \
--batch_size 4 \
--lr 1e-5 \
--epochs 10 \
--weight_decay 5e-4 \
--evi_num 20 \
--max_seq_length 128
@inproceedings{zhang2024causal,
title={Causal Walk: Debiasing Multi-Hop Fact Verification with Front-Door Adjustment},
author={Zhang, Congzhi and Zhang, Linhai and Zhou, Deyu},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={38},
number={17},
pages={19533--19541},
year={2024}
}