This is GitHub repo for Real-time Multi-Robot Mission Planning in Cluttered Environment.
Our paper is available free-of-charge at https://www.mdpi.com/2218-6581/13/3/40. Please cite us:
@Article{robotics13030040,
AUTHOR = {Lu, Zehui and Zhou, Tianyu and Mou, Shaoshuai},
TITLE = {Real-Time Multi-Robot Mission Planning in Cluttered Environment},
JOURNAL = {Robotics},
VOLUME = {13},
YEAR = {2024},
NUMBER = {3},
ARTICLE-NUMBER = {40},
URL = {https://www.mdpi.com/2218-6581/13/3/40},
ISSN = {2218-6581},
DOI = {10.3390/robotics13030040}
}
This repo has been tested with:
- GCC 10.2.0, CMake 3.16.3, Ubuntu 20.04.2 LTS
- GCC 9.3.0, CMake 3.16.3, Ubuntu 20.04.1 LTS
- Clang 12.0.0, CMake 3.18.3, macOS 10.15.7
- Clang 13.0.0, CMake 3.22.0, macOS 11.4
An example with 8 agents and 40 tasks in a 50 * 50 grid map with 250 obstacles is shown below. The computational time is 59.96 ms.
This repo is used for hardware experiments. A video about real-time mission planning for two Parrot Mambo with static/dynamic obstacles and tasks is shown in https://youtu.be/il3YxhXgGac.
For experiments ONLY:
This repo uses two Parrot Mambo quadrotors to do the experiments. To control these quadrotors based on results from RPM, you need to download and install the following repository by the instructions.
For comparisons ONLY:
- CBBA-Python
- Python >= 3.7
- numpy
- matplotlib
For C++ K-means clustering algorithm comparisons ONLY (you don't need the following packages if not running test/k_means_comparison.py
):
This repo uses the binary package of OR-Tools, so you don't have to compile it by yourself. You just need to make OR-Tools as a library of my codes in CMakeLists.txt (which I've done) and compile the solver.
Note: Currently, this repo only supports OR-Tools with version up to V8.2, since OR-Tools updated significantly after V9.0 and has some backward compatibility issues. Please only download OR-Tools binary zip file here, see the screenshot below.
For example, in V8.2, you can choose or-tools_MacOsX-11.2.1_v8.2.8710.tar.gz
for macOS; choose or-tools_ubuntu-20.04_v8.2.8710.tar.gz
for Ubuntu.
After you download the binary package and unzip it, make sure OR-Tools is working (see how to test it in Section Test). Then do the followings to build C++ codes. See more details here and here to build C++ codes by CMake with OR-Tools Binary Distribution.
Since Lazy-Theta-with-optimization-any-angle-pathfinding is a submodule of this repo, follow the instructions below to build Lazy-Theta-with-optimization-any-angle-pathfinding and this repo respectively.
To download this repo and build Lazy-Theta-with-optimization-any-angle-pathfinding,
$ sudo apt install build-essential zlib1g-dev # For macOS: xcode-select --install && brew install cmake zlib
$ sudo apt install libgflags-dev libgoogle-glog-dev # For macOS: brew install gflags glog
$ apt install python3-pybind11 # For macOS: brew install pybind11
$ pip3 install numpy matplotlib scipy
$ git clone https://github.com/zehuilu/Real-time-Parallel-Multi-Robot-Mission-Planning-in-Cluttered-Environment.git
$ cd <MAIN_DIRECTORY>
$ git submodule update --init --recursive
$ cd externals/Lazy-Theta-with-optimization-any-angle-pathfinding
$ mkdir build
$ cd build
$ cmake ..
$ make
To build this repo,
$ cd <MAIN_DIRECTORY>
$ mkdir build
$ cd build
$ # download OR-Tools Binary and extract it
$ cmake -DORTOOLS_ROOT=<path-to-ortools-root-dir> ..
# For example (macOS): cmake -DORTOOLS_ROOT=/Users/zehui/or-tools_MacOsX-11.2.1_v8.2.8710 ..
# For example (Linux): cmake -DORTOOLS_ROOT=/home/aims-zehui/or-tools_Ubuntu-20.04-64bit_v8.0.8283 ..
# For example (Linux): cmake -DORTOOLS_ROOT=/home/zehui/or-tools_Ubuntu-20.04-64bit_v8.2.8710 ..
$ make
- To test if Lazy-Theta-with-optimization-any-angle-pathfinding is working correctly:
$ cd <MAIN_DIRECTORY>/externals/Lazy-Theta-with-optimization-any-angle-pathfinding
$ build/main_single_path
- To test if OR-Tools is installed properly and works correctly:
$ cd <MAIN_DIRECTORY>/build
$ ./test_or_tools
- To test if CBBA-Python is working correctly:
$ cd <MAIN_DIRECTORY>/
$ python3 example/run_cbba.py
- To test if CBBA-Python + path finding is working correctly:
$ cd <MAIN_DIRECTORY>/
$ python3 example/run_cbba_and_find_path.py
- To run Mission Planner once:
$ cd <MAIN_DIRECTORY>
$ python3 example/run_MissionPlanning.py
- To run Mission Planner iteratively:
$ cd <MAIN_DIRECTORY>
$ python3 example/run_MissionPlanning_online.py
- To run Mission Planner for one agent once:
$ cd <MAIN_DIRECTORY>
$ python3 example/run_SolveOneAgent.py
- To run Mission Planner for one agent iteratively:
$ cd <MAIN_DIRECTORY>
$ python3 example/run_SolveOneAgent_online.py
- To run Mission Planner by CBBA + path finding (the existing method):
$ cd <MAIN_DIRECTORY>
$ python3 example/run_CBBA_Path_Finding.py
- To run the proposed method and the existing method for the same scenario:
$ cd <MAIN_DIRECTORY>
$ python3 comparison/single_compare_CBBA_many_agents.py
First, you need to download Mambo-Tracking-Interface and follow the instructions to install.
- Run one Mambo with Qualisys Motion Capture System and Offline Planner once.
- Create a directory for csv trajectories
$ cd <Mambo-Tracking-Interface>/scripts_aimslab/
$ mkdir traj_csv_files
$ mkdir traj_csv_files/mambo_01
- Run Mocap Qualisys for Mambo tracking controller:
$ cd <Mambo-Tracking-Interface>
$ python3 scripts_aimslab/run_mocap_qualisys.py <mambo_id>
- Run Mambo tracking controller:
$ cd <Mambo-Tracking-Interface>
$ python3 scripts_aimslab/run_mambo.py <mambo_id>
- Run Offline Planner once:
$ cd <MAIN_DIRECTORY>
$ python3 experiment/scripts/run_planner_once.py <mambo_id>
# example: $ python3 experiment/scripts/run_planner_once.py 1
- Run two Mambo with Qualisys Motion Capture System and Online Planner.
- Create a directory for csv trajectories
$ cd <Mambo-Tracking-Interface>/scripts_aimslab/
$ mkdir traj_csv_files
$ mkdir traj_csv_files/mambo_01
$ mkdir traj_csv_files/mambo_02
$ mkdir traj_csv_files/mambo_03
$ chmod +x launch_mambo.sh
- Run mambo_01 Mocap Qualisys for {Online Planner, Mambo tracking controller}, and run Mambo tracking controller:
$ cd <Mambo-Tracking-Interface>
$ ./scripts_aimslab/launch_mambo.sh 1 true
- Run mambo_03 Mocap Qualisys for {Online Planner, Mambo tracking controller}, and run Mambo tracking controller:
$ cd <Mambo-Tracking-Interface>
$ ./scripts_aimslab/launch_mambo.sh 3 true
- Run Online Planner:
$ cd <MAIN_DIRECTORY>
$ python3 experiment/scripts/run_planner_online_multi_agent.py