-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2c9276b
commit 64b7404
Showing
1 changed file
with
315 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,315 @@ | ||
|
||
import torch | ||
import torch.nn as nn | ||
import warnings | ||
warnings.filterwarnings('ignore') | ||
import math | ||
import pandas as pd | ||
import scanpy as sc | ||
import os | ||
from tqdm.auto import tqdm | ||
from sklearn.metrics import accuracy_score ,f1_score ,recall_score ,precision_score | ||
from torch.utils.data import (DataLoader ,Dataset) | ||
torch.set_default_tensor_type(torch.DoubleTensor) | ||
import numpy as np | ||
import random | ||
from sklearn import preprocessing | ||
|
||
def same_seeds(seed): | ||
random.seed(seed) | ||
# Numpy | ||
np.random.seed(seed) | ||
# Torch | ||
torch.manual_seed(seed) | ||
if torch.cuda.is_available(): | ||
torch.cuda.manual_seed(seed) | ||
torch.cuda.manual_seed_all(seed) | ||
torch.backends.cudnn.benchmark = False | ||
torch.backends.cudnn.deterministic = True | ||
same_seeds(2021) | ||
|
||
|
||
|
||
def getXY(gap, adata, y_trains): | ||
X = adata.X | ||
if not isinstance(X, np.ndarray): | ||
X = X.todense() | ||
X = np.asarray(X) | ||
|
||
single_cell_list = [] | ||
for single_cell in X: | ||
feature = [] | ||
length = len(single_cell) | ||
for k in range(0, length, gap): | ||
if (k + gap <= length): | ||
a = single_cell[k:k + gap] | ||
else: | ||
a = single_cell[length - gap:length] | ||
|
||
a = preprocessing.scale(a) | ||
feature.append(a) | ||
feature = np.asarray(feature) | ||
single_cell_list.append(feature) | ||
|
||
single_cell_list = np.asarray(single_cell_list) | ||
|
||
cell_types = [] | ||
|
||
if(len(y_trains) > 0): | ||
for i in y_trains: | ||
i = str(i).upper() | ||
if (not cell_types.__contains__(i)): | ||
cell_types.append(i) | ||
|
||
return single_cell_list, y_trains, cell_types | ||
else: | ||
return single_cell_list | ||
|
||
def getNewData(cells, cell_types): | ||
labels = [] | ||
for i in range(len(cells)): | ||
cell = cells[i] | ||
cell = str(cell).upper() | ||
|
||
if (cell_types.__contains__(cell)): | ||
indexs = cell_types.index(cell) | ||
labels.append(indexs + 1) | ||
else: | ||
labels.append(0) # 0 denotes the unknowns cell types | ||
|
||
return np.asarray(labels) | ||
|
||
|
||
class TrainDataSet(Dataset): | ||
def __init__(self, data, label): | ||
self.data = data | ||
self.label = label | ||
self.length = len(data) | ||
|
||
def __len__(self): | ||
return self.length | ||
|
||
def __getitem__(self, index): | ||
data = torch.from_numpy(self.data) | ||
label = torch.from_numpy(self.label) | ||
|
||
return data[index], label[index] | ||
|
||
class TestDataSet(Dataset): | ||
def __init__(self, data): | ||
self.data = data | ||
|
||
self.length = len(data) | ||
|
||
def __len__(self): | ||
return self.length | ||
|
||
def __getitem__(self, index): | ||
data = torch.from_numpy(self.data) | ||
return data[index] | ||
|
||
class PositionalEncoding(nn.Module): | ||
def __init__(self, d_model, dropout=0.1, max_len=5000): | ||
super(PositionalEncoding, self).__init__() | ||
self.dropout = nn.Dropout(p=dropout) | ||
pe = torch.zeros(max_len, d_model) | ||
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) | ||
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) | ||
pe[:, 0::2] = torch.sin(position * div_term) | ||
pe[:, 1::2] = torch.cos(position * div_term) | ||
pe = pe.unsqueeze(0).transpose(0, 1) | ||
self.register_buffer('pe', pe) | ||
|
||
def forward(self, x): | ||
x = x + self.pe[:x.size(0), :] | ||
return self.dropout(x) | ||
|
||
class CIForm(nn.Module): | ||
def __init__(self, input_dim, nhead=2, d_model=80, num_classes=2, dropout=0.1): | ||
super().__init__() | ||
self.encoder_layer = nn.TransformerEncoderLayer( | ||
d_model=d_model, dim_feedforward=1024, nhead=nhead, dropout=dropout | ||
) | ||
self.positionalEncoding = PositionalEncoding(d_model=d_model, dropout=dropout) | ||
self.pred_layer = nn.Sequential( | ||
nn.Linear(d_model, d_model), | ||
nn.ReLU(), | ||
nn.Linear(d_model, num_classes) | ||
) | ||
|
||
def forward(self, mels): | ||
out = mels.permute(1, 0, 2) | ||
out = self.positionalEncoding(out) | ||
out = self.encoder_layer(out) | ||
out = out.transpose(0, 1) | ||
out = out.mean(dim=1) | ||
out = self.pred_layer(out) | ||
return out | ||
|
||
def ciForm(s ,Train_adata ,train_labels ,Test_adata,y_test,n_epochs=20): | ||
gap = s | ||
d_models = s | ||
heads = 64 | ||
|
||
lr = 0.0001 | ||
dp = 0.1 | ||
batch_sizes = 256 | ||
n_epochs = n_epochs | ||
|
||
train_data, train_cells, train_cellTypes = getXY(gap,Train_adata,train_labels) | ||
print("train_cellTypes",train_cellTypes) | ||
|
||
cell_types = train_cellTypes | ||
Train_labels = getNewData(train_cells, cell_types) | ||
labels = Train_labels | ||
cell_types = np.unique(train_labels) | ||
num_classes = len(cell_types) + 1 | ||
|
||
query_data, test_cells, test_cellTypes = getXY(gap, Test_adata, y_test) | ||
test_labels = getNewData(test_cells, train_cellTypes) | ||
|
||
|
||
model = CIForm(input_dim=d_models, nhead=heads, d_model=d_models, | ||
num_classes=num_classes ,dropout=dp) | ||
|
||
criterion = nn.CrossEntropyLoss() | ||
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=1e-5) | ||
|
||
|
||
train_dataset = TrainDataSet(data=train_data, label=labels) | ||
train_loader = DataLoader(train_dataset, batch_size=batch_sizes, shuffle=True, | ||
pin_memory=True) | ||
test_dataset = TrainDataSet(data=query_data, label=test_labels) | ||
test_loader = DataLoader(test_dataset, batch_size=batch_sizes, shuffle=False, | ||
pin_memory=True) | ||
new_cellTypes = [] | ||
new_cellTypes.append("unassigned") | ||
new_cellTypes.extend(cell_types) | ||
|
||
|
||
model.train() | ||
for epoch in range(n_epochs): | ||
# model.train() | ||
# These are used to record information in training. | ||
train_loss = [] | ||
train_accs = [] | ||
train_f1s = [] | ||
for batch in tqdm(train_loader): | ||
# A batch consists of image data and corresponding labels. | ||
data, labels = batch | ||
logits = model(data) | ||
labels = torch.tensor(labels, dtype=torch.long) | ||
loss = criterion(logits, labels) | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
preds = logits.argmax(1) | ||
preds = preds.cpu().numpy() | ||
labels = labels.cpu().numpy() | ||
|
||
acc = accuracy_score(labels, preds) | ||
f1 = f1_score(labels ,preds ,average='macro') | ||
train_loss.append(loss.item()) | ||
train_accs.append(acc) | ||
train_f1s.append(f1) | ||
train_loss = sum(train_loss) / len(train_loss) | ||
train_acc = sum(train_accs) / len(train_accs) | ||
train_f1 = sum(train_f1s) / len(train_f1s) | ||
|
||
print \ | ||
(f"[ Train | {epoch + 1:03d}/{n_epochs:03d} ] loss = {train_loss:.5f}, acc = {train_acc:.5f}, f1 = {train_f1:.5f}") | ||
|
||
model.eval() | ||
test_accs = [] | ||
test_f1s = [] | ||
y_predict = [] | ||
labelss = [] | ||
for batch in tqdm(test_loader): | ||
# A batch consists of image data and corresponding labels. | ||
data, labels = batch | ||
with torch.no_grad(): | ||
logits = model(data) | ||
preds = logits.argmax(1) | ||
preds = preds.cpu().numpy().tolist() | ||
labels = labels.cpu().numpy().tolist() | ||
acc = accuracy_score(labels, preds) | ||
f1 = f1_score(labels, preds, average='macro') | ||
test_f1s.append(f1) | ||
test_accs.append(acc) | ||
|
||
y_predict.extend(preds) | ||
labelss.extend(labels) | ||
test_acc = sum(test_accs) / len(test_accs) | ||
test_f1 = sum(test_f1s) / len(test_f1s) | ||
print("---------------------------------------------end test---------------------------------------------") | ||
print("y_predict", y_predict) | ||
print("labelss", labelss) | ||
|
||
print("len(y_predict)" ,len(y_predict)) | ||
print("test_acc:", test_acc ,"test_f1:", test_f1) | ||
all_acc = accuracy_score(labelss, y_predict) | ||
all_f1 = f1_score(labelss, y_predict, average='macro') | ||
print("all_acc:", all_acc ,"all_f1:", all_f1) | ||
|
||
labelsss = [] | ||
y_predicts = [] | ||
for i in labelss: | ||
labelsss.append(new_cellTypes[i]) | ||
for i in y_predict: | ||
y_predicts.append(new_cellTypes[i]) | ||
|
||
log_dir = "log/" | ||
log_txt = "log/" | ||
|
||
if (not os.path.isdir(log_dir)): | ||
os.makedirs(log_dir) | ||
|
||
last_path = log_dir + str(n_epochs) + "/" | ||
if (not os.path.isdir(last_path)): | ||
os.makedirs(last_path) | ||
with open(log_txt + "end_norm.txt", "a") as f: | ||
f.writelines("log_dir:" + last_path + "\n") | ||
f.writelines("acc:" + str(all_acc) + "\n") | ||
f.writelines('f1:' + str(all_f1) + "\n") | ||
|
||
|
||
s = 1024 | ||
|
||
|
||
import os | ||
import time as tm | ||
from sklearn.metrics import * | ||
from sklearn.model_selection import train_test_split | ||
|
||
|
||
tissues = "Root" | ||
path = "../../Datasets/Arabidopsis thaliana/" + tissues + "/" | ||
data_name = "03SRP330542" | ||
test_paths = [path] | ||
test_names = [data_name + ".h5ad"] | ||
topgenes = 2000 | ||
|
||
adata_mod1 = sc.read_h5ad(test_paths[0] + test_names[0]) | ||
adata_mod1.var_names_make_unique() | ||
adata_mod1.obs['domain_id'] = 0 | ||
sc.pp.highly_variable_genes(adata_mod1, n_top_genes=topgenes) | ||
adata_mod1 = adata_mod1[:, adata_mod1.var['highly_variable']] | ||
|
||
X = adata_mod1.X # obsm['X_pca']#.todense() | ||
if not isinstance(X, np.ndarray): | ||
X = X.todense() | ||
|
||
X = np.asarray(X) | ||
print("X.shape", X.shape) | ||
Y = adata_mod1.obs['Celltype'].to_numpy() | ||
print("Y.shape", Y.shape) | ||
|
||
test_size = 0.99 | ||
ref_adata, query_adata, y_train, y_test = train_test_split(adata_mod1, Y, test_size=test_size, random_state=2024) | ||
print("ref_adata",ref_adata) | ||
print("query_adata",query_adata) | ||
start = tm.time() | ||
|
||
ciForm(s ,ref_adata ,y_train ,query_adata,y_test,n_epochs=20) | ||
|